IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p787-d203084.html
   My bibliography  Save this article

Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect

Author

Listed:
  • Zhijie Wu

    (Suzhou Urban and Environment Research Institute, Xi’an Jiaotong-liverpool University, Suzhou 215200, Jiangsu, China)

  • Yixin Zhang

    (Suzhou Urban and Environment Research Institute, Xi’an Jiaotong-liverpool University, Suzhou 215200, Jiangsu, China
    Department of Health and Environmental Sciences, Xi’an Jiaotong-liverpool University, Suzhou 215123, Jiangsu, China
    Huai’an Research Institute of New-type Urbanization, Xi’an Jiaotong-liverpool University, Huai’an 223005, Jiangsu, China)

Abstract

The urban heat island (UHI) effect caused by urbanization is a major environmental concern. Utilizing cooling effects of water bodies as one type of ecosystem service is an important way to mitigate UHI in urban areas during the daytime. This study aims to examine the influence of water bodies’ cooling effects on the urban land surface temperature (LST). The potential influence on the relationship between urban land cover and the LST are also discussed. The daytime LST in April was retrieved from Landsat-8 thermal infrared band and the grid-based method was adopted to analyze the potential influence. The results indicated that Suzhou Bay is broadly capable of lowering daytime temperatures. The cooling distance can reach 800 m in horizontal space, and the maximum cooling effect was 3.02 °C. Furthermore, the distance to the Suzhou Bay is a great factor for the relationship between land cover and the LST. We found that the cooling effects have weakened the correct quantitative correlation between land cover (e.g., green space and impervious surface) and the LST, particularly green space in the range of 200 m. In addition, the cooling effects have strengthened the “cool edge” phenomenon when analyzing the relationship between the normal difference vegetation index (NDVI) and the LST. We suggest that the distance to the water bodies should be effectively utilized in the microclimate regulation provided by ecosystem services of water bodies. When investigating the thermal effects of urban land, urban planners and designers should consider water bodies’ effects on surrounding areas. These findings have implications for understanding the role of water bodies with ecosystem services of temperature mitigation, which must be fully appreciated for sustainable urban and landscape planning.

Suggested Citation

  • Zhijie Wu & Yixin Zhang, 2019. "Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect," Sustainability, MDPI, vol. 11(3), pages 1-11, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:787-:d:203084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhijie Wu & Yixin Zhang, 2018. "Spatial Variation of Urban Thermal Environment and Its Relation to Green Space Patterns: Implication to Sustainable Landscape Planning," Sustainability, MDPI, vol. 10(7), pages 1-11, June.
    2. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingke Wu & Dehong Liu & Tiantian Lin, 2023. "The Impact of Climate Change on Financial Stability," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    2. Michael Strobel & Uli Jakob & Wolfgang Streicher & Daniel Neyer, 2023. "Spatial Distribution of Future Demand for Space Cooling Applications and Potential of Solar Thermal Cooling Systems," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    3. Xindi Zhang & Yixin Zhang & Jun Zhai & Yongfa Wu & Anyuan Mao, 2021. "Waterscapes for Promoting Mental Health in the General Population," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    4. Mingjun Sun & Xinyi Zhao & Yun Wang & Zeqi Ren & Xin Fu, 2023. "Factors Affecting the High-Intensity Cooling Distance of Urban Green Spaces: A Case Study of Xi’an, China," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    5. N. S. Nalini, 2021. "Urbanisation and changing temperature patterns in the city of Bengaluru," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9090-9109, June.
    6. Peng Ren & Xinxin Zhang & Haoyan Liang & Qinglin Meng, 2019. "Assessing the Impact of Land Cover Changes on Surface Urban Heat Islands with High-Spatial-Resolution Imagery on a Local Scale: Workflow and Case Study," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    7. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    8. Cristina Piselli & Matteo Di Grazia & Anna Laura Pisello, 2020. "Combined Effect of Outdoor Microclimate Boundary Conditions on Air Conditioning System’s Efficiency and Building Energy Demand in Net Zero Energy Settlements," Sustainability, MDPI, vol. 12(15), pages 1-13, July.
    9. Hongyu Du & Fengqi Zhou, 2022. "Mitigating Extreme Summer Heat Waves with the Optimal Water-Cooling Island Effect Based on Remote Sensing Data from Shanghai, China," IJERPH, MDPI, vol. 19(15), pages 1-14, July.
    10. Wei Gao & Gengyu Chen & Fanying Jiang & Jiake Shen & Yuncai Wang, 2021. "To Act or Not to Act: Are Natural Landscapes a Key Force in the Resilience of Historic Urban Landscapes?," Sustainability, MDPI, vol. 13(18), pages 1-33, September.
    11. Barrak Alahmad & Linda Powers Tomasso & Ali Al-Hemoud & Peter James & Petros Koutrakis, 2020. "Spatial Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool Islands," IJERPH, MDPI, vol. 17(9), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goran Krsnik & Sonia Reyes-Paecke & Keith M. Reynolds & Jordi Garcia-Gonzalo & José Ramón González Olabarria, 2023. "Assessing Relativeness in the Provision of Urban Ecosystem Services: Better Comparison Methods for Improved Well-Being," Land, MDPI, vol. 12(5), pages 1-16, May.
    2. Gaodi Xie & Wenhui Chen & Shuyan Cao & Chunxia Lu & Yu Xiao & Changshun Zhang & Na Li & Shuo Wang, 2014. "The Outward Extension of an Ecological Footprint in City Expansion: The Case of Beijing," Sustainability, MDPI, vol. 6(12), pages 1-16, December.
    3. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    4. Alexander V. Rusanov, 2019. "Dacha dwellers and gardeners: garden plots and second homes in Europe and Russia," Population and Economics, ARPHA Platform, vol. 3(1), pages 107-124, April.
    5. Hui, Ling Chui & Jim, C.Y., 2022. "Urban-greenery demands are affected by perceptions of ecosystem services and disservices, and socio-demographic and environmental-cultural factors," Land Use Policy, Elsevier, vol. 120(C).
    6. Monika Kopecká & Daniel Szatmári & Konštantín Rosina, 2017. "Analysis of Urban Green Spaces Based on Sentinel-2A: Case Studies from Slovakia," Land, MDPI, vol. 6(2), pages 1-17, April.
    7. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    8. Ahmet Tolunay & Çağlar Başsüllü, 2015. "Willingness to Pay for Carbon Sequestration and Co-Benefits of Forests in Turkey," Sustainability, MDPI, vol. 7(3), pages 1-27, March.
    9. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    10. Massoni, Emma Soy & Barton, David N. & Rusch, Graciela M. & Gundersen, Vegard, 2018. "Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces," Ecosystem Services, Elsevier, vol. 31(PC), pages 502-516.
    11. Somajita Paul & Harini Nagendra, 2017. "Factors Influencing Perceptions and Use of Urban Nature: Surveys of Park Visitors in Delhi," Land, MDPI, vol. 6(2), pages 1-23, April.
    12. Bo Yang & Ming-Han Li & Shujuan Li, 2013. "Design-with-Nature for Multifunctional Landscapes: Environmental Benefits and Social Barriers in Community Development," IJERPH, MDPI, vol. 10(11), pages 1-26, October.
    13. Dennis, Matthew & James, Philip, 2017. "Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level," Ecosystem Services, Elsevier, vol. 26(PA), pages 17-26.
    14. Gregg C. Brill & Pippin M. L. Anderson & Patrick O’Farrell, 2022. "Relational Values of Cultural Ecosystem Services in an Urban Conservation Area: The Case of Table Mountain National Park, South Africa," Land, MDPI, vol. 11(5), pages 1-28, April.
    15. Donatella Valente & María Victoria Marinelli & Erica Maria Lovello & Cosimo Gaspare Giannuzzi & Irene Petrosillo, 2022. "Fostering the Resiliency of Urban Landscape through the Sustainable Spatial Planning of Green Spaces," Land, MDPI, vol. 11(3), pages 1-13, March.
    16. Vahid Amini Parsa & Esmail Salehi & Ahmad Reza Yavari & Peter M van Bodegom, 2019. "An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    17. Amit Kumar & Vivek Agarwal & Lalit Pal & Surendra Kumar Chandniha & Vishal Mishra, 2021. "Effect of Land Surface Temperature on Urban Heat Island in Varanasi City, India," J, MDPI, vol. 4(3), pages 1-10, August.
    18. Aevermann Tim & Schmude Jürgen, 2015. "Quantification and monetary valuation of urban ecosystem services in Munich, Germany," ZFW – Advances in Economic Geography, De Gruyter, vol. 59(3), pages 188-200, December.
    19. J. Amy Belaire & Heather Bass & Heather Venhaus & Keri Barfield & Tim Pannkuk & Katherine Lieberknecht & Shalene Jha, 2023. "High-Performance Landscapes: Re-Thinking Design and Management Choices to Enhance Ecological Benefits in Urban Environments," Land, MDPI, vol. 12(9), pages 1-18, August.
    20. Ou Deng & Yiqiu Li & Ruoshuang Li & Guangbin Yang, 2022. "Estimation of Forest Ecosystem Climate Regulation Service Based on Actual Evapotranspiration of New Urban Areas in Guanshanhu District, Guiyang, Guizhou Province, China," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:787-:d:203084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.