IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1992-d152297.html
   My bibliography  Save this article

Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China

Author

Listed:
  • Min Min

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Watershed Geographic Sciences, Chinese Academy of Sciences, Nanjing 210008, China)

  • Hongbo Zhao

    (Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China)

  • Changhong Miao

    (Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng 475004, China)

Abstract

During the progress of urbanization in China, a large number of natural landscapes have been replaced by impervious surfaces. The strong interference from human activities has led to the intensification of urban heat island (UHI) effects and has had a negative influence on the health of residents. Zhengzhou, as a new representative city of rapid urbanization, can be used as a case study for UHI. This study built an inversion model of the land surface temperature (LST) of Zhengzhou in 1996, 2000, 2006, 2010 and 2014. On this foundation, the four indicators of land use/land cover (LULC), density of the population, urban construction, and industrial development were chosen to establish a quantitative analysis model between them and the LST. The conclusions were as follows: (1) From 1996–2014, the average LST in Zhengzhou increased by 2.939 °C, and the standard deviation decreased from 4.08 to 2.64. (2) Since 2006, the development zone far from the center of city has become a new urban high temperature zone. The distribution characteristics of the UHI have changed from “centralization in downtown” to “downtown and suburban distribution”. (3) Construction land and vegetation had the most significant impacts on the UHI effect. The construction land was positively correlated with LST, and the vegetation showed the opposite effect. The population density, urban construction and industrial development have strong driving effects on the UHI effect, of which the driving force of industrial development is the most intense.

Suggested Citation

  • Min Min & Hongbo Zhao & Changhong Miao, 2018. "Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1992-:d:152297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    2. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianwei Gao & Haiting Han & Shidong Ge, 2023. "Carbon-Saving Potential of Urban Parks in the Central Plains City: A High Spatial Resolution Study Using a Forest City, Shangqiu, China, as a Lens," Land, MDPI, vol. 12(7), pages 1-19, July.
    2. Huawei Li & Guifang Wang & Guohang Tian & Sándor Jombach, 2020. "Mapping and Analyzing the Park Cooling Effect on Urban Heat Island in an Expanding City: A Case Study in Zhengzhou City, China," Land, MDPI, vol. 9(2), pages 1-17, February.
    3. Chenyu Du & Peihao Song & Kun Wang & Ang Li & Yongge Hu & Kaihua Zhang & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Yangyang Zhang & Shidong Ge, 2022. "Investigating the Trends and Drivers between Urbanization and the Land Surface Temperature: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    4. Huawei Li & Sandor Jombach & Guohang Tian & Yuanzheng Li & Handong Meng, 2022. "Characterizing Temporal Dynamics of Urban Heat Island in a Rapidly Expanding City: A 39 Years Study in Zhengzhou, China," Land, MDPI, vol. 11(10), pages 1-18, October.
    5. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    6. Xiaodong Huang & Wenkai Liu & Yuping Han & Chunying Wang & Han Wang & Sai Hu, 2019. "Performance Evaluation and Comparison of Modified Spectral Mixture Analysis Method for Different Images of Landsat Series Satellites," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    7. Darshana Athukorala & Yuji Murayama, 2020. "Spatial Variation of Land Use/Cover Composition and Impact on Surface Urban Heat Island in a Tropical Sub-Saharan City of Accra, Ghana," Sustainability, MDPI, vol. 12(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinling Quan, 2019. "Multi-Temporal Effects of Urban Forms and Functions on Urban Heat Islands Based on Local Climate Zone Classification," IJERPH, MDPI, vol. 16(12), pages 1-35, June.
    2. Marcos Vinicius Bueno de Morais & Viviana Vanesa Urbina Guerrero & Edmilson Dias de Freitas & Edson R. Marciotto & Hugo Valdés & Christian Correa & Roberto Agredano & Ismael Vera-Puerto, 2019. "Sensitivity of Radiative and Thermal Properties of Building Material in the Urban Atmosphere," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    3. Tianyu Xi & Huan Qin & Weiqing Xu & Tong Yang & Chenxin Hu & Caiyi Zhao & Haoshun Wang, 2023. "Constantly Tracking and Investigating People’s Physical, Psychological, and Thermal Responses in Relation to Park Strolling in a Severe Cold Region of China—A Case Study of Stalin Waterfront Park," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    4. Feiyu Wang & Keqin Duan & Lei Zou, 2019. "Urbanization Effects on Human-Perceived Temperature Changes in the North China Plain," Sustainability, MDPI, vol. 11(12), pages 1-15, June.
    5. Qunfang Huang & Yuqi Lu, 2015. "The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China," IJERPH, MDPI, vol. 12(8), pages 1-17, July.
    6. Yuqing Shu & Kang Zou & Guie Li & Qingwu Yan & Siyu Zhang & Wenhao Zhang & Yuqing Liang & Wenzhou Xu, 2022. "Evaluation of Urban Thermal Comfort and Its Relationship with Land Use/Land Cover Change: A Case Study of Three Urban Agglomerations, China," Land, MDPI, vol. 11(12), pages 1-16, November.
    7. Dmitry A. Ruban & Natalia N. Yashalova & Olga A. Cherednichenko & Natalya A. Dovgot’ko, 2020. "Climate Change, Agriculture, and Energy Transition: What Do the Thirty Most-Cited Articles Tell Us?," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    8. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    9. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    10. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    11. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    12. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    13. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    14. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    15. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    16. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    17. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    18. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    19. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    20. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1992-:d:152297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.