IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p1096-d139777.html
   My bibliography  Save this article

“Slowing” and “Narrowing” the Flow of Metals for Consumer Goods: Evaluating Opportunities and Barriers

Author

Listed:
  • Elsa Dominish

    (Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Monique Retamal

    (Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Samantha Sharpe

    (Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Ruth Lane

    (School of Social Sciences, Monash University, Clayton, VIC 3800, Australia)

  • Muhammad Akbar Rhamdhani

    (Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • Glen Corder

    (Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia)

  • Damien Giurco

    (Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Nick Florin

    (Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

Metal resources are essential materials for many consumer products, including vehicles and a wide array of electrical and electronic goods. These metal resources often cause adverse social and environmental impacts from their extraction, supply and disposal, and it is therefore important to increase the sustainability of their production and use. A broad range of strategies and actions to improve the sustainability of resources are increasingly being discussed within the evolving concept of the circular economy. This paper uses this lens to evaluate the opportunities and barriers to improve the sustainability of metals in consumer products in Australia, with a focus on strategies that “slow” and “narrow” material flow loops. We have drawn on Allwood’s characterisation of material efficiency strategies, as they have the potential to reduce the total demand for metals. These strategies target the distribution, sale, and use of products, which have received less research attention compared to the sustainability of mining, production, and recycling, yet it is vitally important for changing patterns of consumption in a circular economy. Specifically, we have considered the strategies of product longevity (life extension, intensity of use, repair, and resale), remanufacturing, component reuse, and using less material for the same product or service (digitisation, servicisation, and light-weighting). Within the Australian context, this paper identifies the strategies that have the greatest opportunity to increase material efficiency for metal-containing products (such as mobility, household appliances, and personal electronics), by evaluating current implementation of these strategies and identifying the material, economic, and social barriers to and opportunities for expanding these strategies. We find that many of these strategies have been successfully implemented for mobility, while applying these strategies to personal electronics remains the biggest challenge. Product longevity emerged as the strategy with the most significant opportunity for further implementation in Australia, as it is the most broadly applicable across product types and has significant potential for material efficiency benefits. The barriers to material efficiency strategies highlight the need for policies that broaden the focus beyond closing the loop to “slowing” and “narrowing” material loops.

Suggested Citation

  • Elsa Dominish & Monique Retamal & Samantha Sharpe & Ruth Lane & Muhammad Akbar Rhamdhani & Glen Corder & Damien Giurco & Nick Florin, 2018. "“Slowing” and “Narrowing” the Flow of Metals for Consumer Goods: Evaluating Opportunities and Barriers," Sustainability, MDPI, vol. 10(4), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1096-:d:139777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/1096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/1096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zarar Siddiqi & Ron Buliung, 2013. "Dynamic ridesharing and information and communications technology: past, present and future prospects," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(6), pages 479-498, August.
    2. Allwood, Julian M. & Ashby, Michael F. & Gutowski, Timothy G. & Worrell, Ernst, 2011. "Material efficiency: A white paper," Resources, Conservation & Recycling, Elsevier, vol. 55(3), pages 362-381.
    3. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    4. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    5. Daniel R. Cooper & Timothy G. Gutowski, 2017. "The Environmental Impacts of Reuse: A Review," Journal of Industrial Ecology, Yale University, vol. 21(1), pages 38-56, February.
    6. Martin, Elliot & Shaheen, Susan, 2011. "The Impact of Carsharing on Household Vehicle Ownership," University of California Transportation Center, Working Papers qt7w58646d, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    2. Theresa S. Wallner & Lise Magnier & Ruth Mugge, 2020. "An Exploration of the Value of Timeless Design Styles for the Consumer Acceptance of Refurbished Products," Sustainability, MDPI, vol. 12(3), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonidas Milios, 2021. "Towards a Circular Economy Taxation Framework: Expectations and Challenges of Implementation," Circular Economy and Sustainability,, Springer.
    2. Mohamad Kaddoura & Marianna Lena Kambanou & Anne-Marie Tillman & Tomohiko Sakao, 2019. "Is Prolonging the Lifetime of Passive Durable Products a Low-Hanging Fruit of a Circular Economy? A Multiple Case Study," Sustainability, MDPI, vol. 11(18), pages 1-22, September.
    3. Ionela-Corina Chersan & Mirela Paunescu & Elena-Mirela Nichita & Valentin Florentin Dumitru & Cristina Lidia Manea, 2023. "Circular Economy Practices in the Electrical and Electronic Equipment Sector in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(62), pages 1-80, February.
    4. Efstathios Kakkos & Felix Heisel & Dirk E. Hebel & Roland Hischier, 2020. "Towards Urban Mining—Estimating the Potential Environmental Benefits by Applying an Alternative Construction Practice. A Case Study from Switzerland," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    5. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    6. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    7. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    8. Julie Bulteau & Thierry Feuillet & Sophie Dantan & Souhir Abbes, 2023. "Encouraging carpooling for commuting in the Paris area (France): which incentives and for whom?," Transportation, Springer, vol. 50(1), pages 43-62, February.
    9. Neha Mehta & Giovanna Antonella Dino & Iride Passarella & Franco Ajmone-Marsan & Piergiorgio Rossetti & Domenico Antonio De Luca, 2020. "Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy," Sustainability, MDPI, vol. 12(6), pages 1-22, March.
    10. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    11. Matthias Kalverkamp & Alexandra Pehlken & Thorsten Wuest, 2017. "Cascade Use and the Management of Product Lifecycles," Sustainability, MDPI, vol. 9(9), pages 1-23, August.
    12. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    13. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
    14. Meng, Zhiyi & Li, Eldon Y. & Qiu, Rui, 2020. "Environmental sustainability with free-floating carsharing services: An on-demand refueling recommendation system for Car2go in Seattle," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    15. Qipeng Sun & Yuqi He & Yongjie Wang & Fei Ma, 2019. "Evolutionary Game between Government and Ride-Hailing Platform: Evidence from China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-14, January.
    16. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    17. Isaac Lyatuu & Georg Loss & Andrea Farnham & Goodluck W. Lyatuu & Günther Fink & Mirko S. Winkler, 2021. "Associations between Natural Resource Extraction and Incidence of Acute and Chronic Health Conditions: Evidence from Tanzania," IJERPH, MDPI, vol. 18(11), pages 1-12, June.
    18. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    19. C.-Philipp Heller & Johannes Johnen & Sebastian Schmitz, 2019. "Congestion Pricing: A Mechanism Design Approach," Journal of Transport Economics and Policy, University of Bath, vol. 53(1), pages 74-7-98.
    20. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:1096-:d:139777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.