IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p365-d129570.html
   My bibliography  Save this article

A Study on the Analysis of CO 2 Emissions of Apartment Housing in the Construction Process

Author

Listed:
  • Jonggeon Lee

    (Green Remodeling Department, Korea Land & Housing Corporation, Seongnam-daero 54beon-gil, Seongnam 13637, Korea)

  • Sungho Tae

    (School of Architecture & Architectural Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan 15588, Korea)

  • Rakhyun Kim

    (Architectural Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan 15588, Korea)

Abstract

Recent research in the construction industry has focused on the reduction of CO 2 emission using quantitative assessment of building life. However, most of this research has focused on the operational stage of a building’s life cycle. Few comprehensive studies of CO 2 emissions during building construction have been performed. The purpose of this study is to analyze the CO 2 emissions of an apartment housing during the construction process. The quantity of CO 2 emissions associated with the utilization of selected building materials and construction equipment were used to estimate the CO 2 emissions related to the apartment housing life cycle. In order to set the system boundary for the construction materials, equipment, and transportation used, 13 types of construction work were identified; then the CO 2 emissions produced by the identified materials were calculated for each type of construction work. The comprehensive results showed that construction work involving reinforced concrete accounted for more than 73% of the total CO 2 emissions. The CO 2 emissions related to reinforced concrete work was mainly due to transportation from the supplier to the construction site. Therefore, at the time that reinforced concrete is being supplied, shipping distance and fuel economy management of concrete transportation vehicles should be considered thoroughly for significant reduction of CO 2 emissions.

Suggested Citation

  • Jonggeon Lee & Sungho Tae & Rakhyun Kim, 2018. "A Study on the Analysis of CO 2 Emissions of Apartment Housing in the Construction Process," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:365-:d:129570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    2. Cheonghoon Baek & Sungho Tae & Rakhyun Kim & Sungwoo Shin, 2016. "Life Cycle CO 2 Assessment by Block Type Changes of Apartment Housing," Sustainability, MDPI, vol. 8(8), pages 1-14, August.
    3. Mohamad Monkiz Khasreen & Phillip F. G. Banfill & Gillian F. Menzies, 2009. "Life-Cycle Assessment and the Environmental Impact of Buildings: A Review," Sustainability, MDPI, vol. 1(3), pages 1-28, September.
    4. Murat Kucukvar & Gokhan Egilmez & Omer Tatari, 2016. "Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building," Sustainability, MDPI, vol. 8(1), pages 1-13, January.
    5. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Aashed Khan Abbasi & Shabir Hussain Khahro & Yasir Javed, 2021. "Carbon Dioxide Footprint and Its Impacts: A Case of Academic Buildings," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    2. Seunguk Na & Inkwan Paik, 2019. "Reducing Greenhouse Gas Emissions and Costs with the Alternative Structural System for Slab: A Comparative Analysis of South Korea Cases," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    3. Maximilian Weigert & Oleksandr Melnyk & Leopold Winkler & Jacqueline Raab, 2022. "Carbon Emissions of Construction Processes on Urban Construction Sites," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    4. Jihoon Kim & Sungho Tae & Rakhyun Kim, 2018. "Theoretical Study on the Production of Environment-Friendly Recycled Cement Using Inorganic Construction Wastes as Secondary Materials in South Korea," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
    5. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    6. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    7. Fang, Zigeng & Yan, Jiayi & Lu, Qiuchen & Chen, Long & Yang, Pu & Tang, Junqing & Jiang, Feng & Broyd, Tim & Hong, Jingke, 2023. "A systematic literature review of carbon footprint decision-making approaches for infrastructure and building projects," Applied Energy, Elsevier, vol. 335(C).
    8. Inkwan Paik & Seunguk Na, 2019. "Comparison of Carbon Dioxide Emissions of the Ordinary Reinforced Concrete Slab and the Voided Slab System During the Construction Phase: A Case Study of a Residential Building in South Korea," Sustainability, MDPI, vol. 11(13), pages 1-16, June.
    9. Hyojin Lim & Sungho Tae & Seungjun Roh, 2018. "Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    10. Caraiman Adrian-Cosmin, 2022. "Economic And Financial Analysis During The Life Cycle Of Buildings In The Context Of Sustainable Development," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 122-136, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    2. Ilaria Marotta & Francesco Guarino & Sonia Longo & Maurizio Cellura, 2021. "Environmental Sustainability Approaches and Positive Energy Districts: A Literature Review," Sustainability, MDPI, vol. 13(23), pages 1-45, November.
    3. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    4. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    5. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    6. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    7. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Seungho Cho & Seunguk Na, 2017. "The Reduction of CO 2 Emissions by Application of High-Strength Reinforcing Bars to Three Different Structural Systems in South Korea," Sustainability, MDPI, vol. 9(9), pages 1-24, September.
    9. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    10. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    11. Hsien-Te Lin & Yi-Jiung Lin, 2022. "Component-level embodied carbon database for landscape hard works in Taiwan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4918-4941, April.
    12. Ningshuang Zeng & Yan Liu & Chao Mao & Markus König, 2018. "Investigating the Relationship between Construction Supply Chain Integration and Sustainable Use of Material: Evidence from China," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    13. Insub Choi & JunHee Kim & DongWon Kim, 2020. "LCA-Based Investigation of Environmental Impacts for Novel Double-Beam Floor System Subjected to High Gravity Loads," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    14. Umberto Vitiello & Antonio Salzano & Domenico Asprone & Marco Di Ludovico & Andrea Prota, 2016. "Life-Cycle Assessment of Seismic Retrofit Strategies Applied to Existing Building Structures," Sustainability, MDPI, vol. 8(12), pages 1-18, December.
    15. Inkwan Paik & Seunguk Na & Seongho Yoon, 2018. "Assessment of CO 2 Emissions by Replacing an Ordinary Reinforced Concrete Slab with the Void Slab System in a High-Rise Commercial Residential Complex Building in South Korea," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    16. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    17. Thibodeau, Charles & Bataille, Alain & Sié, Marion, 2019. "Building rehabilitation life cycle assessment methodology–state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 408-422.
    18. Aysun Özkan & Zerrin Günkaya & Gülden Tok & Levent Karacasulu & Melike Metesoy & Müfide Banar & Alpagut Kara, 2016. "Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    19. Xiaoyu Luo & Cong Ma & Jian Ge, 2020. "Evaluation Model and Strategy for Selecting Carbon Reduction Technology for Campus Buildings in Primary and Middle Schools in the Yangtze River Delta Region, China," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    20. Elisa Di Giuseppe & Marco D’Orazio & Guangli Du & Claudio Favi & Sébastien Lasvaux & Gianluca Maracchini & Pierryves Padey, 2020. "A Stochastic Approach to LCA of Internal Insulation Solutions for Historic Buildings," Sustainability, MDPI, vol. 12(4), pages 1-35, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:365-:d:129570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.