IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3533-d173223.html
   My bibliography  Save this article

Synthesis of Climate, Soil Factors, and Nitrogen Management Practices Affecting the Responses of Wheat Productivity and Nitrogen Use Efficiency to Nitrogen Fertilizer in China

Author

Listed:
  • Yunqi Wang

    (College of Agronomy, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China)

  • Jiapeng Yang

    (College of Agronomy, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China)

  • Rui Zhang

    (College of Agronomy, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China)

  • Zhikuan Jia

    (College of Agronomy, Northwest A&F University, No. 3 Taicheng Road, Yangling 712100, Shaanxi, China
    Key Laboratory of Crop Physi-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling 712100, Shaanxi, China)

Abstract

The reported effects of nitrogen (N) fertilizer on wheat yield and nitrogen use efficiency (NUE) vary greatly, due to differences in climate, soil factors, and N management practices in different regions of China. We collected literature published during 1950–2017 that reported the yield and NUE for wheat in China, under N application and control treatments, and analyzed the data therein. A significant increase in yield was observed with N application, and varied with climate, soil factors, and N management practices in different regions. A larger increase in yield was observed under an average annual temperature of 13–15 °C, an average annual precipitation of >800 mm, respectively. Greater yield-increasing effects were observed in soil with a coarse soil texture, lower soil total N, available N, and a soil pH of ≤7 and >8, respectively. In Northwest China, the yield increase was greater under multiple coated urea applications after anthesis, while the higher NUE was observed under single coated urea application before anthesis. In North China, the yield and NUE were greater under multiple coated urea applications before anthesis. In South China, the yield and NUE were greater under multiple N applications. Consequently, to improve wheat yield and NUE, site-specific N management practices should be adopted.

Suggested Citation

  • Yunqi Wang & Jiapeng Yang & Rui Zhang & Zhikuan Jia, 2018. "Synthesis of Climate, Soil Factors, and Nitrogen Management Practices Affecting the Responses of Wheat Productivity and Nitrogen Use Efficiency to Nitrogen Fertilizer in China," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3533-:d:173223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    2. Li, Wenlong & Han, Xiaozhuo & Zhang, Yanyu & Li, Zizhen, 2007. "Effects of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas," Agricultural Water Management, Elsevier, vol. 87(1), pages 106-114, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Haiyong & Qiao, Yuetong & Li, Xiaojing & Xue, Yanhui & Wang, Na & Yan, Wei & Xue, Yanfang & Cui, Zhenling & van der Werf, Wopke, 2023. "Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat-maize double cropping in the North China Plain: A four-year rotation study," Agricultural Systems, Elsevier, vol. 204(C).
    2. Lin Xie & Zeyuan Qiu & Liangzhi You & Yang Kang, 2020. "A Macro Perspective on the Relationship between Farm Size and Agrochemicals Use in China," Sustainability, MDPI, vol. 12(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianchao & Feng, Hao & He, Jianqiang & Chen, Haixin & Ding, Dianyuan, 2018. "The effects of nitrogen and water stresses on the nitrogen-to-protein conversion factor of winter wheat," Agricultural Water Management, Elsevier, vol. 210(C), pages 217-223.
    2. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    4. Amir Tabarzad & Ali Asghar Ghaemi & Shahrokh Zand-parsa, 2016. "Barley Grain Yield and Protein Content Response to Deficit Irrigation and Sowing Dates in Semi-Arid Region," Modern Applied Science, Canadian Center of Science and Education, vol. 10(10), pages 193-193, October.
    5. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    7. Ilbeyi, Adem & Ustun, Haluk & Oweis, Theib & Pala, Mustafa & Benli, Bogachan, 2006. "Wheat water productivity and yield in a cool highland environment: Effect of early sowing with supplemental irrigation," Agricultural Water Management, Elsevier, vol. 82(3), pages 399-410, April.
    8. Mohamed Kharrou & Michel Le Page & Ahmed Chehbouni & Vincent Simonneaux & Salah Er-Raki & Lionel Jarlan & Lahcen Ouzine & Said Khabba & Ghani Chehbouni, 2013. "Assessment of Equity and Adequacy of Water Delivery in Irrigation Systems Using Remote Sensing-Based Indicators in Semi-Arid Region, Morocco," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4697-4714, October.
    9. Araya, A. & Gowda, P.H. & Golden, B. & Foster, A.J. & Aguilar, J. & Currie, R. & Ciampitti, I.A. & Prasad, P.V.V., 2019. "Economic value and water productivity of major irrigated crops in the Ogallala aquifer region," Agricultural Water Management, Elsevier, vol. 214(C), pages 55-63.
    10. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    11. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    12. Dong Guo & Chuanyong Chen & Baoyuan Zhou & Di Ma & William D. Batchelor & Xiao Han & Zaisong Ding & Mei Du & Ming Zhao & Ming Li & Wei Ma, 2022. "Drip Fertigation with Relatively Low Water and N Input Achieved Higher Grain Yield of Maize by Improving Pre- and Post-Silking Dry Matter Accumulation," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    13. Oweis, T. Y. & Hachum, A. Y., 2003. "Improving water productivity in the dry areas of West Asia and North Africa," IWMI Books, Reports H032642, International Water Management Institute.
    14. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    15. Aziiba Emmanuel Asibi & Falong Hu & Zhilong Fan & Qiang Chai, 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    16. Metin Sezen, S. & Yazar, Attila, 2006. "Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 59-76, March.
    17. Knowling, Matthew J. & Walker, Rob R. & Pellegrino, Anne & Edwards, Everard J. & Westra, Seth & Collins, Cassandra & Ostendorf, Bertram & Bennett, Bree, 2023. "Generalized water production relations through process-based modeling: A viticulture example," Agricultural Water Management, Elsevier, vol. 280(C).
    18. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    19. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    20. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3533-:d:173223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.