IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v4y2021i2p32-549d572502.html
   My bibliography  Save this article

Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison

Author

Listed:
  • Tingting Zhou

    (U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA)

  • Michael R. Elliott

    (Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA)

  • Roderick J. A. Little

    (Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA)

Abstract

Without randomization of treatments, valid inference of treatment effects from observational studies requires controlling for all confounders because the treated subjects generally differ systematically from the control subjects. Confounding control is commonly achieved using the propensity score, defined as the conditional probability of assignment to a treatment given the observed covariates. The propensity score collapses all the observed covariates into a single measure and serves as a balancing score such that the treated and control subjects with similar propensity scores can be directly compared. Common propensity score-based methods include regression adjustment and inverse probability of treatment weighting using the propensity score. We recently proposed a robust multiple imputation-based method, penalized spline of propensity for treatment comparisons (PENCOMP), that includes a penalized spline of the assignment propensity as a predictor. Under the Rubin causal model assumptions that there is no interference across units, that each unit has a non-zero probability of being assigned to either treatment group, and there are no unmeasured confounders, PENCOMP has a double robustness property for estimating treatment effects. In this study, we examine the impact of using variable selection techniques that restrict predictors in the propensity score model to true confounders of the treatment-outcome relationship on PENCOMP. We also propose a variant of PENCOMP and compare alternative approaches to standard error estimation for PENCOMP. Compared to the weighted estimators, PENCOMP is less affected by inclusion of non-confounding variables in the propensity score model. We illustrate the use of PENCOMP and competing methods in estimating the impact of antiretroviral treatments on CD4 counts in HIV+ patients.

Suggested Citation

  • Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2021. "Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison," Stats, MDPI, vol. 4(2), pages 1-21, June.
  • Handle: RePEc:gam:jstats:v:4:y:2021:i:2:p:32-549:d:572502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/4/2/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/4/2/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Bradley Efron, 2014. "Estimation and Accuracy After Model Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 991-1007, September.
    3. Guangyu Zhang & Roderick Little, 2009. "Extensions of the Penalized Spline of Propensity Prediction Method of Imputation," Biometrics, The International Biometric Society, vol. 65(3), pages 911-918, September.
    4. Ngo, Long & Wand, Matthew P., 2004. "Smoothing with Mixed Model Software," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i01).
    5. Susan M. Shortreed & Ashkan Ertefaie, 2017. "Outcome‐adaptive lasso: Variable selection for causal inference," Biometrics, The International Biometric Society, vol. 73(4), pages 1111-1122, December.
    6. Tyler J. VanderWeele & Ilya Shpitser, 2011. "A New Criterion for Confounder Selection," Biometrics, The International Biometric Society, vol. 67(4), pages 1406-1413, December.
    7. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2019. "Penalized Spline of Propensity Methods for Treatment Comparison: Rejoinder," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 35-38, January.
    8. Georgia Papadogeorgou & Fan Li, 2019. "Discussion of “Penalized Spline of Propensity Methods for Treatment Comparison”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 32-35, January.
    9. Xavier De Luna & Ingeborg Waernbaum & Thomas S. Richardson, 2011. "Covariate selection for the nonparametric estimation of an average treatment effect," Biometrika, Biometrika Trust, vol. 98(4), pages 861-875.
    10. Ben B. Hansen, 2008. "The prognostic analogue of the propensity score," Biometrika, Biometrika Trust, vol. 95(2), pages 481-488.
    11. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2019. "Penalized Spline of Propensity Methods for Treatment Comparison," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 1-19, January.
    12. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    13. Corwin Matthew Zigler & Francesca Dominici, 2014. "Uncertainty in Propensity Score Estimation: Bayesian Methods for Variable Selection and Model-Averaged Causal Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 95-107, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2022. "Addressing Disparities in the Propensity Score Distributions for Treatment Comparisons from Observational Studies," Stats, MDPI, vol. 5(4), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2022. "Addressing Disparities in the Propensity Score Distributions for Treatment Comparisons from Observational Studies," Stats, MDPI, vol. 5(4), pages 1-17, December.
    2. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    3. Joseph Antonelli & Matthew Cefalu & Nathan Palmer & Denis Agniel, 2018. "Doubly robust matching estimators for high dimensional confounding adjustment," Biometrics, The International Biometric Society, vol. 74(4), pages 1171-1179, December.
    4. David Cheng & Abhishek Chakrabortty & Ashwin N. Ananthakrishnan & Tianxi Cai, 2020. "Estimating average treatment effects with a double‐index propensity score," Biometrics, The International Biometric Society, vol. 76(3), pages 767-777, September.
    5. Susan M. Shortreed & Ashkan Ertefaie, 2017. "Outcome‐adaptive lasso: Variable selection for causal inference," Biometrics, The International Biometric Society, vol. 73(4), pages 1111-1122, December.
    6. Maria Josefsson & Michael J. Daniels, 2021. "Bayesian semi‐parametric G‐computation for causal inference in a cohort study with MNAR dropout and death," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 398-414, March.
    7. Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.
    8. Dingke Tang & Dehan Kong & Wenliang Pan & Linbo Wang, 2023. "Ultra‐high dimensional variable selection for doubly robust causal inference," Biometrics, The International Biometric Society, vol. 79(2), pages 903-914, June.
    9. Brian J. Reich & Shu Yang & Yawen Guan, 2022. "Discussion on “Spatial+: A novel approach to spatial confounding” by Dupont, Wood, and Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1291-1294, December.
    10. Yongnam Kim, 2019. "The Causal Structure of Suppressor Variables," Journal of Educational and Behavioral Statistics, , vol. 44(4), pages 367-389, August.
    11. Davide Viviano & Jelena Bradic, 2021. "Dynamic covariate balancing: estimating treatment effects over time with potential local projections," Papers 2103.01280, arXiv.org, revised Jan 2024.
    12. Thomas S. Richardson & James M. Robins & Linbo Wang, 2018. "Discussion of “Data†driven confounder selection via Markov and Bayesian networks†by Häggström," Biometrics, The International Biometric Society, vol. 74(2), pages 403-406, June.
    13. Antonio R. Linero, 2023. "Prior and posterior checking of implicit causal assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 3153-3164, December.
    14. Ao Yuan & Anqi Yin & Ming T. Tan, 2021. "Enhanced Doubly Robust Procedure for Causal Inference," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 454-478, December.
    15. Matthew Cefalu & Francesca Dominici & Nils Arvold & Giovanni Parmigiani, 2017. "Model averaged double robust estimation," Biometrics, The International Biometric Society, vol. 73(2), pages 410-421, June.
    16. Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
    17. Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
    18. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    19. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    20. Xu Qin & Jonah Deutsch & Guanglei Hong, 2021. "Unpacking Complex Mediation Mechanisms And Their Heterogeneity Between Sites In A Job Corps Evaluation," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 40(1), pages 158-190, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:4:y:2021:i:2:p:32-549:d:572502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.