IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i4p861-875.html
   My bibliography  Save this article

Covariate selection for the nonparametric estimation of an average treatment effect

Author

Listed:
  • Xavier De Luna
  • Ingeborg Waernbaum
  • Thomas S. Richardson

Abstract

Observational studies in which the effect of a nonrandomized treatment on an outcome of interest is estimated are common in domains such as labour economics and epidemiology. Such studies often rely on an assumption of unconfounded treatment when controlling for a given set of observed pre-treatment covariates. The choice of covariates to control in order to guarantee unconfoundedness should primarily be based on subject matter theories, although the latter typically give only partial guidance. It is tempting to include many covariates in the controlling set to try to make the assumption of an unconfounded treatment realistic. Including unnecessary covariates is suboptimal when the effect of a binary treatment is estimated nonparametrically. For instance, when using a n-super-1/2-consistent estimator, a loss of efficiency may result from using covariates that are irrelevant for the unconfoundedness assumption. Moreover, bias may dominate the variance when many covariates are used. Embracing the Neyman--Rubin model typically used in conjunction with nonparametric estimators of treatment effects, we characterize subsets from the original reservoir of covariates that are minimal in the sense that the treatment ceases to be unconfounded given any proper subset of these minimal sets. These subsets of covariates are shown to be identified under mild assumptions. These results lead us to propose data-driven algorithms for the selection of minimal sets of covariates. Copyright 2011, Oxford University Press.

Suggested Citation

  • Xavier De Luna & Ingeborg Waernbaum & Thomas S. Richardson, 2011. "Covariate selection for the nonparametric estimation of an average treatment effect," Biometrika, Biometrika Trust, vol. 98(4), pages 861-875.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:861-875
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr041
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:861-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.