IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i4p123-d177140.html
   My bibliography  Save this article

Evaluation of the Kou-Modified Lee-Carter Model in Mortality Forecasting: Evidence from French Male Mortality Data

Author

Listed:
  • Marie Angèle Cathleen Alijean

    (Department of Economics and Statistics, University of Mauritius, Réduit 80837, Mauritius)

  • Jason Narsoo

    (Department of Economics and Statistics, University of Mauritius, Réduit 80837, Mauritius)

Abstract

Mortality forecasting has always been a target of study by academics and practitioners. Since the introduction and rising significance of securitization of risk in mortality and longevity, more in-depth studies regarding mortality have been carried out to enable the fair pricing of such derivatives. In this article, a comparative analysis is performed on the mortality forecasting accuracy of four mortality models. The methodology employs the Age-Period-Cohort model, the Cairns-Blake-Dowd model, the classical Lee-Carter model and the Kou-Modified Lee-Carter model. The Kou-Modified Lee-Carter model combines the classical Lee-Carter with the Double Exponential Jump Diffusion model. This paper is the first study to employ the Kou model to forecast French mortality data. The dataset comprises death data of French males from age 0 to age 90, available for the years 1900–2015. The paper differentiates between two periods: the 1900–1960 period where extreme mortality events occurred for French males and the 1961–2015 period where no significant jump is observed. The Kou-modified Lee-Carter model turns out to give the best mortality forecasts based on the RMSE, MAE, MPE and MAPE metrics for the period 1900–1960 during which the two World Wars occurred. This confirms that the consideration of jumps and leptokurtic features conveys important information for mortality forecasting.

Suggested Citation

  • Marie Angèle Cathleen Alijean & Jason Narsoo, 2018. "Evaluation of the Kou-Modified Lee-Carter Model in Mortality Forecasting: Evidence from French Male Mortality Data," Risks, MDPI, vol. 6(4), pages 1-26, October.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:123-:d:177140
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/4/123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/4/123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Hua & Cummins, J. David, 2010. "Longevity bond premiums: The extreme value approach and risk cubic pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 150-161, February.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Booth, H. & Tickle, L., 2008. "Mortality Modelling and Forecasting: a Review of Methods," Annals of Actuarial Science, Cambridge University Press, vol. 3(1-2), pages 3-43, September.
    7. Carlo Maccheroni & Samuel Nocito, 2017. "Backtesting the Lee–Carter and the Cairns–Blake–Dowd Stochastic Mortality Models on Italian Death Rates," Risks, MDPI, vol. 5(3), pages 1-23, July.
    8. Angus S. Deaton & Christina Paxson, 2004. "Mortality, Income, and Income Inequality over Time in Britain and the United States," NBER Chapters, in: Perspectives on the Economics of Aging, pages 247-286, National Bureau of Economic Research, Inc.
    9. Yinglu Deng & Patrick L. Brockett & Richard D. MacMinn, 2012. "Longevity/Mortality Risk Modeling and Securities Pricing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(3), pages 697-721, September.
    10. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    11. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    12. Hua Chen & Samuel H. Cox, 2009. "Modeling Mortality With Jumps: Applications to Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 727-751, September.
    13. Samuel H. Cox & Yijia Lin & Shaun Wang, 2006. "Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 719-736, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I. A. Lakman & R. A. Askarov & V. B. Prudnikov & Z. F. Askarova & V. M. Timiryanova, 2021. "Predicting Mortality by Causes in the Republic of Bashkortostan Using the Lee–Carter Model," Studies on Russian Economic Development, Springer, vol. 32(5), pages 536-548, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Fen-Ying & Yang, Sharon S. & Huang, Hong-Chih, 2022. "Modeling pandemic mortality risk and its application to mortality-linked security pricing," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 341-363.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    5. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    6. Liu, Yanxin & Li, Johnny Siu-Hang, 2015. "The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 135-150.
    7. Bahl, Raj Kumari & Sabanis, Sotirios, 2021. "Model-independent price bounds for Catastrophic Mortality Bonds," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 276-291.
    8. Raj Kumari Bahl & Sotirios Sabanis, 2016. "Model-Independent Price Bounds for Catastrophic Mortality Bonds," Papers 1607.07108, arXiv.org, revised Dec 2020.
    9. Chen, Hua & Cummins, J. David, 2010. "Longevity bond premiums: The extreme value approach and risk cubic pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 150-161, February.
    10. Patrick L. Brockett & Shuo-li Chuang & Yinglu Deng & Richard D. MacMinn, 2013. "Incorporating Longevity Risk and Medical Information Into Life Settlement Pricing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 799-826, September.
    11. Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
    12. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    13. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    14. Mitchell, Daniel & Brockett, Patrick & Mendoza-Arriaga, Rafael & Muthuraman, Kumar, 2013. "Modeling and forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 275-285.
    15. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    16. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    17. Yijia Lin & Sheen Liu & Jifeng Yu, 2013. "Pricing Mortality Securities With Correlated Mortality Indexes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 921-948, December.
    18. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    19. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    20. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:123-:d:177140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.