IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v1y2013i3p148-161d30342.html
   My bibliography  Save this article

A Risk Model with an Observer in a Markov Environment

Author

Listed:
  • Hansjörg Albrecher

    (Department of Actuarial Science, University of Lausanne, Lausanne CH-1015, Switzerland
    Swiss Finance Institute, University of Lausanne, Lausanne CH-1015, Switzerland)

  • Jevgenijs Ivanovs

    (Department of Actuarial Science, University of Lausanne, Lausanne CH-1015, Switzerland)

Abstract

We consider a spectrally-negative Markov additive process as a model of a risk process in a random environment. Following recent interest in alternative ruin concepts, we assume that ruin occurs when an independent Poissonian observer sees the process as negative, where the observation rate may depend on the state of the environment. Using an approximation argument and spectral theory, we establish an explicit formula for the resulting survival probabilities in this general setting. We also discuss an efficient evaluation of the involved quantities and provide a numerical illustration.

Suggested Citation

  • Hansjörg Albrecher & Jevgenijs Ivanovs, 2013. "A Risk Model with an Observer in a Markov Environment," Risks, MDPI, vol. 1(3), pages 1-14, November.
  • Handle: RePEc:gam:jrisks:v:1:y:2013:i:3:p:148-161:d:30342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/1/3/148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/1/3/148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengjun Jiang & Martijn Pistorius, 2008. "On perpetual American put valuation and first-passage in a regime-switching model with jumps," Finance and Stochastics, Springer, vol. 12(3), pages 331-355, July.
    2. D'Auria, Bernardo & Kella, Offer & Ivanovs, Jevgenijs & Mandjes, Michel, 2010. "First passage of a Markov additive process and generalized Jordan chains," DES - Working Papers. Statistics and Econometrics. WS ws103923, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Albrecher, Hansjörg & Lautscham, Volkmar, 2013. "From Ruin To Bankruptcy For Compound Poisson Surplus Processes," ASTIN Bulletin, Cambridge University Press, vol. 43(2), pages 213-243, May.
    4. Gerber, Hans U. & Lin, X. Sheldon & Yang, Hailiang, 2006. "A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 489-503, November.
    5. Z. Jiang & M. R. Pistorius, 2008. "On perpetual American put valuation and first-passage in a regime-switching model with jumps," Papers 0803.2302, arXiv.org.
    6. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    7. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    8. Ivanovs, Jevgenijs, 2013. "A note on killing with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 29-34.
    9. Ronnie Loeffen & Irmina Czarna & Zbigniew Palmowski, 2011. "Parisian ruin probability for spectrally negative L\'{e}vy processes," Papers 1102.4055, arXiv.org, revised Mar 2013.
    10. Dassios, Angelos & Wu, Shanle, 2008. "Parisian ruin with exponential claims," LSE Research Online Documents on Economics 32033, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Can & Li, Shuanming & Wu, Xueyuan, 2016. "On the occupation times in a delayed Sparre Andersen risk model with exponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 304-316.
    2. Ivanovs, Jevgenijs, 2017. "Splitting and time reversal for Markov additive processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2699-2724.
    3. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    4. Bladt, Mogens & Ivanovs, Jevgenijs, 2021. "Fluctuation theory for one-sided Lévy processes with a matrix-exponential time horizon," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 105-123.
    5. Eric C. K. Cheung & Jeff T. Y. Wong, 2023. "A Note on a Modified Parisian Ruin Concept," Risks, MDPI, vol. 11(3), pages 1-15, March.
    6. Lesław Gajek & Marcin Rudź, 2018. "Risk-switching insolvency models," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 51, pages 129-146.
    7. Avram, Florin & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Spectrally negative Lévy processes with Parisian reflection below and classical reflection above," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 255-290.
    8. Choi, Michael C.H. & Cheung, Eric C.K., 2014. "On the expected discounted dividends in the Cramér–Lundberg risk model with more frequent ruin monitoring than dividend decisions," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 121-132.
    9. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    10. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    11. Landriault, David & Li, Bin & Wong, Jeff T.Y. & Xu, Di, 2018. "Poissonian potential measures for Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 152-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Landriault, David & Li, Bin & Wong, Jeff T.Y. & Xu, Di, 2018. "Poissonian potential measures for Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 152-166.
    2. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, September.
    3. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    4. Guérin, Hélène & Renaud, Jean-François, 2017. "On the distribution of cumulative Parisian ruin," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 116-123.
    5. Kim, Jerim & Kim, Jeongsim & Joo Yoo, Hyun & Kim, Bara, 2015. "Pricing external barrier options in a regime-switching model," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 123-143.
    6. Ning Cai & Wei Zhang, 2020. "Regime Classification and Stock Loan Valuation," Operations Research, INFORMS, vol. 68(4), pages 965-983, July.
    7. Xiaoqing Liang & Virginia R. Young, 2020. "Minimizing the Probability of Lifetime Exponential Parisian Ruin," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 1036-1064, March.
    8. Brinker, Leonie Violetta & Eisenberg, Julia, 2021. "Dividend optimisation: A behaviouristic approach," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 202-224.
    9. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    10. Olivier Courtois & Xiaoshan Su, 2020. "Structural Pricing of CoCos and Deposit Insurance with Regime Switching and Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 477-520, December.
    11. Landriault, David & Li, Bin & Lkabous, Mohamed Amine, 2021. "On the analysis of deep drawdowns for the Lévy insurance risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 147-155.
    12. Olivier Le Courtois & François Quittard-Pinon & Xiaoshan Su, 2020. "Pricing and hedging defaultable participating contracts with regime switching and jump risk," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 303-339, June.
    13. Wong, Jeff T.Y. & Cheung, Eric C.K., 2015. "On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 280-290.
    14. David Landriault & Jean-François Renaud & Xiaowen Zhou, 2014. "An Insurance Risk Model with Parisian Implementation Delays," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 583-607, September.
    15. Søren Asmussen & Patrick J. Laub & Hailiang Yang, 2019. "Phase-Type Models in Life Insurance: Fitting and Valuation of Equity-Linked Benefits," Risks, MDPI, vol. 7(1), pages 1-22, February.
    16. Li, Shuanming & Ren, Jiandong, 2013. "The maximum severity of ruin in a perturbed risk process with Markovian arrivals," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 993-998.
    17. D’Auria, Bernardo & Kella, Offer, 2012. "Markov modulation of a two-sided reflected Brownian motion with application to fluid queues," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1566-1581.
    18. Li, Shu & Zhou, Xiaowen, 2022. "The Parisian and ultimate drawdowns of Lévy insurance models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 140-160.
    19. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    20. Peter Carr & John Crosby, 2010. "A class of Levy process models with almost exact calibration to both barrier and vanilla FX options," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1115-1136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:1:y:2013:i:3:p:148-161:d:30342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.