IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A Risk Model with an Observer in a Markov Environment

Listed author(s):
  • Hansjörg Albrecher

    ()

    (Department of Actuarial Science, University of Lausanne, Lausanne CH-1015, Switzerland
    Swiss Finance Institute, University of Lausanne, Lausanne CH-1015, Switzerland)

  • Jevgenijs Ivanovs

    ()

    (Department of Actuarial Science, University of Lausanne, Lausanne CH-1015, Switzerland)

Registered author(s):

    We consider a spectrally-negative Markov additive process as a model of a risk process in a random environment. Following recent interest in alternative ruin concepts, we assume that ruin occurs when an independent Poissonian observer sees the process as negative, where the observation rate may depend on the state of the environment. Using an approximation argument and spectral theory, we establish an explicit formula for the resulting survival probabilities in this general setting. We also discuss an efficient evaluation of the involved quantities and provide a numerical illustration.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.mdpi.com/2227-9091/1/3/148/pdf
    Download Restriction: no

    File URL: http://www.mdpi.com/2227-9091/1/3/148/
    Download Restriction: no

    Article provided by MDPI, Open Access Journal in its journal Risks.

    Volume (Year): 1 (2013)
    Issue (Month): 3 (November)
    Pages: 1-14

    as
    in new window

    Handle: RePEc:gam:jrisks:v:1:y:2013:i:3:p:148-161:d:30342
    Contact details of provider: Web page: http://www.mdpi.com/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.
    2. Landriault, David & Renaud, Jean-François & Zhou, Xiaowen, 2011. "Occupation times of spectrally negative Lévy processes with applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2629-2641, November.
    3. Mandjes, Michel & Ivanovs, Jevgenijs & Kella, Offer & D'Auria, Bernardo, 2010. "First passage of a Markov additive process and generalized Jordan chains," DES - Working Papers. Statistics and Econometrics. WS ws103923, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Ivanovs, Jevgenijs, 2013. "A note on killing with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 29-34.
    5. Albrecher, Hansjörg & Lautscham, Volkmar, 2013. "From Ruin to Bankruptcy for Compound Poisson Surplus Processes," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 43(02), pages 213-243, May.
    6. Gerber, Hans U. & Lin, X. Sheldon & Yang, Hailiang, 2006. "A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 36(02), pages 489-503, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:1:y:2013:i:3:p:148-161:d:30342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.