IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws103923.html
   My bibliography  Save this paper

First passage of a Markov additive process and generalized Jordan chains

Author

Listed:
  • D'Auria, Bernardo
  • Kella, Offer
  • Ivanovs, Jevgenijs
  • Mandjes, Michel

Abstract

In this paper we consider the first passage process of a spectrally negative Markov additive process (MAP). The law of this process is uniquely characterized by a certain matrix function, which plays a crucial role in fluctuation theory. We show how to identify this matrix using the theory of Jordan chains associated with analytic matrix functions. This result provides us with a technique, which can be used to derive various further identities.

Suggested Citation

  • D'Auria, Bernardo & Kella, Offer & Ivanovs, Jevgenijs & Mandjes, Michel, 2010. "First passage of a Markov additive process and generalized Jordan chains," DES - Working Papers. Statistics and Econometrics. WS ws103923, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws103923
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/676b55b2-e885-4414-aca0-061e0948d3c8/content
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    2. Avram, F. & Badescu, A.L. & Pistorius, M.R. & Rabehasaina, L., 2016. "On a class of dependent Sparre Andersen risk models and a bailout application," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 27-39.
    3. Bladt, Mogens & Ivanovs, Jevgenijs, 2021. "Fluctuation theory for one-sided Lévy processes with a matrix-exponential time horizon," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 105-123.
    4. D’Auria, Bernardo & Kella, Offer, 2012. "Markov modulation of a two-sided reflected Brownian motion with application to fluid queues," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1566-1581.
    5. Ivanovs, Jevgenijs, 2013. "A note on killing with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 29-34.
    6. Li, Jingchao & Dickson, David C.M. & Li, Shuanming, 2015. "Some ruin problems for the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 1-8.
    7. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    8. Ivanovs, Jevgenijs, 2017. "Splitting and time reversal for Markov additive processes," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2699-2724.
    9. D'Auria, Bernardo & Kella, Offer, 2011. "Two-sided reflected Markov-modulated Brownian motion with applications to fluid queues and dividend payouts," DES - Working Papers. Statistics and Econometrics. WS ws111107, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Jevgenijs Ivanovs, 2021. "On scale functions for Lévy processes with negative phase-type jumps," Queueing Systems: Theory and Applications, Springer, vol. 98(1), pages 3-19, June.
    11. Hansjörg Albrecher & Jevgenijs Ivanovs, 2013. "A Risk Model with an Observer in a Markov Environment," Risks, MDPI, vol. 1(3), pages 1-14, November.
    12. Przemysław Klusik & Zbigniew Palmowski, 2014. "A Note on Wiener–Hopf Factorization for Markov Additive Processes," Journal of Theoretical Probability, Springer, vol. 27(1), pages 202-219, March.
    13. Li, Shuanming & Ren, Jiandong, 2013. "The maximum severity of ruin in a perturbed risk process with Markovian arrivals," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 993-998.

    More about this item

    Keywords

    Fluctuation theory;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws103923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.