IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v13y2025i7p135-d1698212.html
   My bibliography  Save this article

Identifying Risk Regimes in a Sectoral Stock Index Through a Multivariate Hidden Markov Framework

Author

Listed:
  • Akara Kijkarncharoensin

    (School of Information Technology, Sripatum University, Bangkok 10900, Thailand)

Abstract

This study explores the presence of hidden market regimes in a sector-specific stock index within the Thai equity market. The behavior of such indices often deviates from broader macroeconomic trends, making it difficult for conventional models to detect regime changes. To overcome this limitation, the study employs a multivariate Gaussian mixture hidden Markov model, which enables the identification of unobservable states based on daily and intraday return patterns. These patterns include open-to-close, open-to-high, and low-to-open returns. The model is estimated using various specifications, and the best-performing structure is chosen based on the Akaike Information Criterion and the Bayesian Information Criterion. The final model reveals three statistically distinct regimes that correspond to bullish, sideways, and bearish conditions. Statistical tests, particularly the Kruskal–Wallis method, confirm that return distributions, trading volume, and open interest differ significantly across these regimes. Additionally, the analysis incorporates risk measures, including expected shortfall, maximum drawdown, and the coefficient of variation. The results indicate that the bearish regime carries the highest risk, whereas the bullish regime is relatively stable. These findings offer practical insights for regime-aware portfolio management in sectoral equity markets.

Suggested Citation

  • Akara Kijkarncharoensin, 2025. "Identifying Risk Regimes in a Sectoral Stock Index Through a Multivariate Hidden Markov Framework," Risks, MDPI, vol. 13(7), pages 1-19, July.
  • Handle: RePEc:gam:jrisks:v:13:y:2025:i:7:p:135-:d:1698212
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/13/7/135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/13/7/135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. Mark Kritzman & Sébastien Page & David Turkington, 2012. "Regime Shifts: Implications for Dynamic Strategies (corrected)," Financial Analysts Journal, Taylor & Francis Journals, vol. 68(3), pages 22-39, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Feunou & Jean-Sébastien Fontaine & Abderrahim Taamouti & Roméo Tédongap, 2014. "Risk Premium, Variance Premium, and the Maturity Structure of Uncertainty," Review of Finance, European Finance Association, vol. 18(1), pages 219-269.
    2. Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2009. "The information content of market liquidity: An empirical analysis of liquidity at the Oslo Stock Exchange?," Working Paper 2009/26, Norges Bank.
    3. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    4. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    5. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    6. Andros Gregoriou & Christos Ioannidis, 2007. "Generalized method of moments and present value tests of the consumption-capital asset pricing model under transactions costs: evidence from the UK stock market," Empirical Economics, Springer, vol. 32(1), pages 19-39, April.
    7. Robert J. Shiller, 2005. "The Life-Cycle Personal Accounts Proposal for Social Security: An Evaluation," Cowles Foundation Discussion Papers 1504, Cowles Foundation for Research in Economics, Yale University.
    8. Mayank Goel & Suresh Kumar K., 2006. "A Risk-Sensitive Portfolio Optimisation Problem with Stochastic Interest Rate," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 263-282, December.
    9. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    10. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    11. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    12. Angelidis, Dimitrios & Koulakiotis Athanasios & Kiohos Apostolos, 2018. "Feedback Trading Strategies: The Case of Greece and Cyprus," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 93-99, June.
    13. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    14. Sabur Mollah & Asma Mobarek, 2009. "Market volatility across countries – evidence from international markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 257-274, October.
    15. repec:ehu:dfaeii:6728 is not listed on IDEAS
    16. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    17. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    18. Zhengyang Jiang & Robert J. Richmond & Tony Zhang, 2024. "A Portfolio Approach to Global Imbalances," Journal of Finance, American Finance Association, vol. 79(3), pages 2025-2076, June.
    19. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    20. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    21. Chen, Jian & Jiang, Fuwei & Liu, Yangshu & Tu, Jun, 2017. "International volatility risk and Chinese stock return predictability," Journal of International Money and Finance, Elsevier, vol. 70(C), pages 183-203.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:13:y:2025:i:7:p:135-:d:1698212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.