IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v12y2024i6p84-d1399208.html
   My bibliography  Save this article

Multi-Timescale Recurrent Neural Networks Beat Rough Volatility for Intraday Volatility Prediction

Author

Listed:
  • Damien Challet

    (Université Paris-Saclay, CentraleSupélec, Laboratoire MICS, 91190 Gif-sur-Yvette, France)

  • Vincent Ragel

    (Université Paris-Saclay, CentraleSupélec, Laboratoire MICS, 91190 Gif-sur-Yvette, France)

Abstract

We extend recurrent neural networks to include several flexible timescales for each dimension of their output, which mechanically improves their abilities to account for processes with long memory or highly disparate timescales. We compare the ability of vanilla and extended long short-term memory networks (LSTMs) to predict the intraday volatility of a collection of equity indices known to have a long memory. Generally, the number of epochs needed to train the extended LSTMs is divided by about two, while the variation in validation and test losses among models with the same hyperparameters is much smaller. We also show that the single model with the smallest validation loss systemically outperforms rough volatility predictions for the average intraday volatility of equity indices by about 20% when trained and tested on a dataset with multiple time series.

Suggested Citation

  • Damien Challet & Vincent Ragel, 2024. "Multi-Timescale Recurrent Neural Networks Beat Rough Volatility for Intraday Volatility Prediction," Risks, MDPI, vol. 12(6), pages 1-10, May.
  • Handle: RePEc:gam:jrisks:v:12:y:2024:i:6:p:84-:d:1399208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/12/6/84/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/12/6/84/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thierry Bochud & Damien Challet, 2007. "Optimal approximations of power laws with exponentials: application to volatility models with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 585-589.
    2. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    3. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    5. Mathieu Rosenbaum & Jianfei Zhang, 2022. "On the universality of the volatility formation process: when machine learning and rough volatility agree," Papers 2206.14114, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damien Challet & Vincent Ragel, 2023. "Recurrent Neural Networks with more flexible memory: better predictions than rough volatility," Working Papers hal-04165354, HAL.
    2. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    3. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    4. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    5. Takaishi, Tetsuya, 2025. "Multifractality and sample size influence on Bitcoin volatility patterns," Finance Research Letters, Elsevier, vol. 74(C).
    6. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    7. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
    8. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    9. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    10. Christensen, Kim & Thyrsgaard, Martin & Veliyev, Bezirgen, 2019. "The realized empirical distribution function of stochastic variance with application to goodness-of-fit testing," Journal of Econometrics, Elsevier, vol. 212(2), pages 556-583.
    11. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    12. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    13. Shin, Minseok & Kim, Donggyu & Fan, Jianqing, 2023. "Adaptive robust large volatility matrix estimation based on high-frequency financial data," Journal of Econometrics, Elsevier, vol. 237(1).
    14. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    15. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    16. Matthieu Garcin, 2019. "Fractal analysis of the multifractality of foreign exchange rates [Analyse fractale de la multifractalité des taux de change]," Working Papers hal-02283915, HAL.
    17. Li, Yingying & Liu, Guangying & Zhang, Zhiyuan, 2022. "Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps," Journal of Econometrics, Elsevier, vol. 229(2), pages 422-451.
    18. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Feb 2017.
    19. repec:hal:wpaper:hal-03827332 is not listed on IDEAS
    20. Jianqing Fan & Donggyu Kim & Minseok Shin & Yazhen Wang, 2024. "Factor and Idiosyncratic VAR-Ito Volatility Models for Heavy-Tailed High-Frequency Financial Data," Working Papers 202415, University of California at Riverside, Department of Economics.
    21. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:12:y:2024:i:6:p:84-:d:1399208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.