IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i6p103-d1162050.html
   My bibliography  Save this article

On Valuation and Investments of Pension Plans in Discrete Incomplete Markets

Author

Listed:
  • Michail Anthropelos

    (Department of Banking & Financial Management, University of Piraeus, 185 34 Pireas, Greece)

  • Evmorfia Blontzou

    (Department of Banking & Financial Management, University of Piraeus, 185 34 Pireas, Greece)

Abstract

We study the valuation of a pension fund’s obligations in a discrete time and space incomplete market model. The market’s incompleteness stems from the non-replicability of the wage process that finances the pension plan through time. The contingent defined-benefit liability of the pension fund is a function of the wages, which can be seen as the payoff of a path-dependent derivative security. We apply the notion of the super-hedging value and propose its difference from the current pension’s fund capital as a measure of distance to liability hedging. The induced closed-form expressions of the values and the related investment strategies provide insightful comparative statistics. Furthermore, we use a utility-based optimization portfolio to point out that in cases of sufficient capital, the application of a subjective investment criterion may result in heavily different strategies than the super-hedging one. This means that the pension fund will be left with some liability risk, although it could have been fully hedged. Finally, we provide conditions under which the effect of a possible early exit leaves the super-hedging valuation unchanged.

Suggested Citation

  • Michail Anthropelos & Evmorfia Blontzou, 2023. "On Valuation and Investments of Pension Plans in Discrete Incomplete Markets," Risks, MDPI, vol. 11(6), pages 1-24, June.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:6:p:103-:d:1162050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/6/103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/6/103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaniv Azoulay & Andrey Kudryavtsev & Shosh Shahrabani, 2016. "Accumulating approach to the life-cycle pension model: practical advantages," Financial Theory and Practice, Institute of Public Finance, vol. 40(4), pages 413-436.
    2. Hainaut, Donatien & Deelstra, Griselda, 2011. "Optimal funding of defined benefit pension plans," Journal of Pension Economics and Finance, Cambridge University Press, vol. 10(1), pages 31-52, January.
    3. Griselda Deelstra & Martino Grasselli & Pierre-François Koehl, 2003. "Optimal investment strategies in the presence of a minimum guarantee," ULB Institutional Repository 2013/7598, ULB -- Universite Libre de Bruxelles.
    4. Emilio Russo, 2020. "A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model," Risks, MDPI, vol. 8(1), pages 1-22, January.
    5. Marín-Solano, Jesús & Navas, Jorge, 2010. "Consumption and portfolio rules for time-inconsistent investors," European Journal of Operational Research, Elsevier, vol. 201(3), pages 860-872, March.
    6. Artem Dyachenko & Patrick Ley & Marc Oliver Rieger & Alexander F. Wagner, 2022. "The asset allocation of defined benefit pension plans: the role of sponsor contributions," Journal of Asset Management, Palgrave Macmillan, vol. 23(5), pages 376-389, September.
    7. Haberman, Steven & Sung, Joo-Ho, 1994. "Dynamic approaches to pension funding," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 151-162, December.
    8. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2003. "Optimal investment strategies in the presence of a minimum guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 189-207, August.
    9. Bolla, Lidia & Wittig, Hagen & Kohler, Alexander, 2016. "The liability market value as benchmark in pension fund performance measurement," Journal of Pension Economics and Finance, Cambridge University Press, vol. 15(1), pages 90-111, January.
    10. Sundaresan, Suresh & Zapatero, Fernando, 1997. "Valuation, Optimal Asset Allocation and Retirement Incentives of Pension Plans," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 631-660.
    11. Daniel Giamouridis & Athanasios Sakkas & Nikolaos Tessaromatis, 2017. "Dynamic Asset Allocation with Liabilities," European Financial Management, European Financial Management Association, vol. 23(2), pages 254-291, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josa-Fombellida, Ricardo & Navas, Jorge, 2020. "Time consistent pension funding in a defined benefit pension plan with non-constant discounting," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 142-153.
    2. Katarzyna Romaniuk, 2007. "The optimal asset allocation of the main types of pension funds: a unified framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 32(2), pages 113-128, December.
    3. Hainaut, Donatien, 2014. "Impulse control of pension fund contributions, in a regime switching economy," European Journal of Operational Research, Elsevier, vol. 239(3), pages 810-819.
    4. Josa-Fombellida, Ricardo & López-Casado, Paula & Rincón-Zapatero, Juan Pablo, 2018. "Portfolio optimization in a defined benefit pension plan where the risky assets are processes with constant elasticity of variance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 73-86.
    5. Liang, Zongxia & Ma, Ming, 2015. "Optimal dynamic asset allocation of pension fund in mortality and salary risks framework," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 151-161.
    6. Yao, Haixiang & Lai, Yongzeng & Ma, Qinghua & Jian, Minjie, 2014. "Asset allocation for a DC pension fund with stochastic income and mortality risk: A multi-period mean–variance framework," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 84-92.
    7. Josa-Fombellida, Ricardo & Rincon-Zapatero, Juan Pablo, 2004. "Optimal risk management in defined benefit stochastic pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 489-503, June.
    8. Henrique Ferreira Morici & Elena Vigna, 2023. "Optimal additional voluntary contribution in DC pension schemes to manage inadequacy risk," Carlo Alberto Notebooks 699 JEL Classification: C, Collegio Carlo Alberto.
    9. Elena Vigna, 2009. "Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes," CeRP Working Papers 89, Center for Research on Pensions and Welfare Policies, Turin (Italy).
    10. Yao, Haixiang & Chen, Ping & Li, Xun, 2016. "Multi-period defined contribution pension funds investment management with regime-switching and mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 103-113.
    11. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    12. Josa-Fombellida, Ricardo & Rincón-Zapatero, Juan Pablo, 2010. "Optimal asset allocation for aggregated defined benefit pension funds with stochastic interest rates," European Journal of Operational Research, Elsevier, vol. 201(1), pages 211-221, February.
    13. Francesco Menoncin & Elena Vigna, 2013. "Mean-variance target-based optimisation in DC plan with stochastic interest rate," Carlo Alberto Notebooks 337, Collegio Carlo Alberto.
    14. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    15. Johanna Scheller & Jacques Pézier, 2008. "Optimal Investment Strategies and Performance Sharing Rules for Pension Schemes with Minimum Guarantee," ICMA Centre Discussion Papers in Finance icma-dp2008-09, Henley Business School, University of Reading, revised Oct 2009.
    16. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    17. Di Giacinto, Marina & Federico, Salvatore & Gozzi, Fausto & Vigna, Elena, 2014. "Income drawdown option with minimum guarantee," European Journal of Operational Research, Elsevier, vol. 234(3), pages 610-624.
    18. Yang Wang & Xiao Xu & Jizhou Zhang, 2021. "Optimal Investment Strategy for DC Pension Plan with Stochastic Income and Inflation Risk under the Ornstein–Uhlenbeck Model," Mathematics, MDPI, vol. 9(15), pages 1-15, July.
    19. Huang, Jianhui & Wang, Guangchen & Wu, Zhen, 2010. "Optimal premium policy of an insurance firm: Full and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 208-215, October.
    20. Deelstra, Griselda & Grasselli, Martino & Koehl, Pierre-Francois, 2004. "Optimal design of the guarantee for defined contribution funds," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2239-2260, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:6:p:103-:d:1162050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.