IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v14y2025i5p74-d1644488.html
   My bibliography  Save this article

Techno-Economic Optimization and Assessment of Solar Photovoltaic–Battery–Hydrogen Energy Systems with Solar Tracking for Powering ICT Facility

Author

Listed:
  • Olubayo Babatunde

    (Department of Industrial Engineering, Durban University of Technology, Durban 4000, South Africa)

  • Oluwaseye Adedoja

    (Centre for Atmospheric Research, National Space Research and Development Agency (NASRDA), Kogi State University Campus, Anyigba 270109, Nigeria)

  • Oluwaseun Oyebode

    (Environment and Climate Change Canada (ECCC), 7400 64 St. SE, Calgary, AB T2C 5V6, Canada)

  • Uthman Abiola Kareem

    (Department of Industrial and Systems Engineering, University of Texas at Arlington, Arlington, TX 76019, USA)

  • Damilola Babatunde

    (Department of Industrial Engineering, Durban University of Technology, Durban 4000, South Africa)

  • Toyosi Adedoja

    (Cooperative Information Network (COPINE),National Space Research and Development Agency (NASRDA), Obafemi Awolowo University, Ile-Ife 220103, Nigeria)

  • Busola Akintayo

    (Department of Industrial Engineering, Durban University of Technology, Durban 4000, South Africa)

  • Michael Emezirinwune

    (Department of Electrical Electronics Engineering, University of Lagos, Lagos 101017, Nigeria)

  • Desmond Eseoghene Ighravwe

    (Department of Industrial Engineering, Durban University of Technology, Durban 4000, South Africa)

  • Olufemi Ogunniran

    (Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomosho 210214, Nigeria)

  • Olanrewaju Oludolapo

    (Department of Industrial Engineering, Durban University of Technology, Durban 4000, South Africa)

Abstract

This paper addresses the critical issue of selecting the optimal solar tracking configuration for maximum energy generation, given the increasing demand for sustainable energy solutions in information and communication technology (ICT) facilities. The main goal is to thoroughly evaluate and compare seven different solar tracking configurations across technical, economic, and environmental dimensions: No Tracking (NT), Monthly Adjusted Horizontal Axis (MAHA), Weekly Adjusted Horizontal Axis (WAHA), Daily Adjusted Horizontal Axis (DAHA), Continuously Adjusted Horizontal Axis (CAHA), Continuously Adjusted Vertical Axis (CAVA), and Dual Axis with Continuous Adjustment (DACA). This study utilizes the HOMER simulation program to evaluate its energy and hydrogen production, emissions, and cost-effectiveness performance. Key findings indicate solar tracking improves energy efficiency, with optimal capacity factors of 18.2% and 17.7% for CAHA and DAHA configurations, respectively. Although load-following strategies increase reliability, there is a trade-off between capital costs and energy costs. In addition, an MCDM approach helps to consolidate the evaluation, resulting in CAVA being ranked as the most preferable option. The study contributes to informed decision-making for energy systems in ICT facilities by emphasizing the significance of considering a variety of criteria and evaluation techniques to address complex energy challenges.

Suggested Citation

  • Olubayo Babatunde & Oluwaseye Adedoja & Oluwaseun Oyebode & Uthman Abiola Kareem & Damilola Babatunde & Toyosi Adedoja & Busola Akintayo & Michael Emezirinwune & Desmond Eseoghene Ighravwe & Olufemi O, 2025. "Techno-Economic Optimization and Assessment of Solar Photovoltaic–Battery–Hydrogen Energy Systems with Solar Tracking for Powering ICT Facility," Resources, MDPI, vol. 14(5), pages 1-28, April.
  • Handle: RePEc:gam:jresou:v:14:y:2025:i:5:p:74-:d:1644488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/14/5/74/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/14/5/74/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Bilal Ali & Abdullah Altamimi & Syed Ali Abbas Kazmi & Zafar A. Khan & Saeed Alyami, 2024. "Sustainable Growth in the Telecom Industry through Hybrid Renewable Energy Integration: A Technical, Energy, Economic and Environmental (3E) Analysis," Sustainability, MDPI, vol. 16(14), pages 1-42, July.
    2. Radoslaw Miskiewicz, 2022. "Clean and Affordable Energy within Sustainable Development Goals: The Role of Governance Digitalization," Energies, MDPI, vol. 15(24), pages 1-17, December.
    3. Vaziri Rad, Mohammad Amin & Toopshekan, Ashkan & Rahdan, Parisa & Kasaeian, Alibakhsh & Mahian, Omid, 2020. "A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Seyed Morteza Hatefi & Hamideh Asadi & Gholamreza Shams & Jolanta Tamošaitienė & Zenonas Turskis, 2021. "Model for the Sustainable Material Selection by Applying Integrated Dempster-Shafer Evidence Theory and Additive Ratio Assessment (ARAS) Method," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    5. Santonab Chakraborty & Himalaya Nirjhar Datta & Kanak Kalita & Shankar Chakraborty, 2023. "A narrative review of multi-objective optimization on the basis of ratio analysis (MOORA) method in decision making," OPSEARCH, Springer;Operational Research Society of India, vol. 60(4), pages 1844-1887, December.
    6. Md. Sanwar Hossain & Abdullah G. Alharbi & Khondoker Ziaul Islam & Md. Rabiul Islam, 2021. "Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication," Sustainability, MDPI, vol. 13(22), pages 1-29, November.
    7. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    8. Daniel Akinyele & Juri Belikov & Yoash Levron, 2018. "Challenges of Microgrids in Remote Communities: A STEEP Model Application," Energies, MDPI, vol. 11(2), pages 1-35, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Pirayawaraporn, Alongkorn & Sappaniran, Sahapol & Nooraksa, Sarawin & Prommai, Chanon & Chindakham, Nachaya & Jamroen, Chaowanan, 2023. "Innovative sensorless dual-axis solar tracking system using particle filter," Applied Energy, Elsevier, vol. 338(C).
    3. Jamroen, Chaowanan & Fongkerd, Chanon & Krongpha, Wipa & Komkum, Preecha & Pirayawaraporn, Alongkorn & Chindakham, Nachaya, 2021. "A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis," Applied Energy, Elsevier, vol. 299(C).
    4. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    5. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Inclusive Economic Growth: Relationship between Energy and Governance Efficiency," Energies, MDPI, vol. 16(6), pages 1-16, March.
    6. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    7. Mousavi, Seyed Ali & Toopshekan, Ashkan & Mehrpooya, Mehdi & Delpisheh, Mostafa, 2023. "Comprehensive exergetic performance assessment and techno-financial optimization of off-grid hybrid renewable configurations with various dispatch strategies and solar tracking systems," Renewable Energy, Elsevier, vol. 210(C), pages 40-63.
    8. Banjo A. Aderemi & S. P. Daniel Chowdhury & Thomas O. Olwal & Adnan M. Abu-Mahfouz, 2018. "Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa," Energies, MDPI, vol. 11(6), pages 1-26, June.
    9. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    10. Tibúrcio, B.D. & Liang, D. & Almeida, J. & Garcia, D. & Catela, M. & Costa, H. & Vistas, C.R., 2022. "Tracking error compensation capacity measurement of a dual-rod side-pumping solar laser," Renewable Energy, Elsevier, vol. 195(C), pages 1253-1261.
    11. James Hamilton & Michael Negnevitsky & Xiaolin Wang, 2018. "Economics of Renewable Energy Integration and Energy Storage via Low Load Diesel Application," Energies, MDPI, vol. 11(5), pages 1-13, April.
    12. Toopshekan, Ashkan & Abedian, Ali & Azizi, Arian & Ahmadi, Esmaeil & Vaziri Rad, Mohammad Amin, 2023. "Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm," Energy, Elsevier, vol. 285(C).
    13. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    14. Lyulyov, Oleksii & Pimonenko, Tetyana & Saura, Jose Ramon & Barbosa, Belem, 2024. "How do e-governance and e-business drive sustainable development goals?," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    15. Quanwu Liu & Zengli Dai & Yuan Wei & Dongxiang Wang & Yu Xie, 2025. "Transformative Impacts of AI and Wireless Communication in CSP Heliostat Control Systems," Energies, MDPI, vol. 18(5), pages 1-35, February.
    16. Volodymyr Nesterenko & Radoslaw Miskiewicz & Rafis Abazov, 2023. "Marketing Communications in the Era of Digital Transformation," Virtual Economics, The London Academy of Science and Business, vol. 6(1), pages 57-70, March.
    17. Toopshekan, Ashkan & Yousefi, Hossein & Astaraei, Fatemeh Razi, 2020. "Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy," Energy, Elsevier, vol. 213(C).
    18. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Gerald A. Abantao & Jessa Alesna Ibañez & Paul Eugene Delfin Bundoc & Lean Lorenzo F. Blas & Xaviery N. Penisa & Eugene A. Esparcia & Michael T. Castro & Karl Ezra Pilario & Adonis Emmanuel D. Tio & I, 2024. "Utility-Scale Grid-Connected Microgrid Planning Framework for Sustainable Renewable Energy Integration," Energies, MDPI, vol. 17(20), pages 1-32, October.
    20. Sun, Leihou & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Shitao, 2024. "A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules," Renewable Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:14:y:2025:i:5:p:74-:d:1644488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.