IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i4p48-d1120240.html
   My bibliography  Save this article

Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool

Author

Listed:
  • Kasin Ransikarbum

    (Department of Industrial Engineering, Ubonratchathani University, Ubonratchathani 34190, Thailand)

  • Wattana Chanthakhot

    (Faculty of Engineering, Thonburi University, Bangkok 10160, Thailand)

  • Tony Glimm

    (Institute of Logistics and Material Handling Systems (ILM), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany)

  • Jettarat Janmontree

    (Institute of Logistics and Material Handling Systems (ILM), Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany)

Abstract

The use of fossil fuels has caused many environmental issues, including greenhouse gas emissions and associated climate change. Several studies have focused on mitigating this problem. One dynamic direction for emerging sources of future renewable energy is the use of hydrogen energy. In this research, we evaluate the sourcing decision for a hydrogen supply chain in the context of a case study in Thailand using group decision making analysis for policy implications. We use an integrative multi-criteria decision analysis (MCDA) tool which includes an analytic hierarchy process (AHP), fuzzy AHP (FAHP), and data envelopment analysis (DEA) to analyze weighted criteria and sourcing alternatives using data collected from a group of selected experts. A list of criteria related to sustainability paradigms and sourcing decisions for possible use of hydrogen energy, including natural gas, coal, biomass, and water, are evaluated. Our results reveal that political acceptance is considered the most important criterion with a global weight of 0.514 in the context of Thailand. Additionally, natural gas is found to be the foreseeable source for hydrogen production in Thailand with a global weight of 0.313. We also note that the analysis is based on specific data inputs and that an alternative with a lower score does not imply that the source is not worth exploring.

Suggested Citation

  • Kasin Ransikarbum & Wattana Chanthakhot & Tony Glimm & Jettarat Janmontree, 2023. "Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool," Resources, MDPI, vol. 12(4), pages 1-22, April.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:4:p:48-:d:1120240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/4/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/4/48/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    2. Florent Montignac & Vincent Mousseau & Denis Bouyssou & Mohamed Ali Aloulou & Benjamin Rousval & Sébastien Damart, 2015. "An MCDA Approach for Evaluating Hydrogen Storage Systems for Future Vehicles," International Handbooks on Information Systems, in: Raymond Bisdorff & Luis C. Dias & Patrick Meyer & Vincent Mousseau & Marc Pirlot (ed.), Evaluation and Decision Models with Multiple Criteria, edition 127, chapter 0, pages 501-532, Springer.
    3. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Nasim Zandi Atashbar & Nacima Labadie & Christian Prins, 2018. "Modelling and optimisation of biomass supply chains: a review," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3482-3506, May.
    5. Christina Wulf & Petra Zapp & Andrea Schreiber & Wilhelm Kuckshinrichs, 2021. "Setting Thresholds to Define Indifferences and Preferences in PROMETHEE for Life Cycle Sustainability Assessment of European Hydrogen Production," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    6. Elahi, Ehsan & Khalid, Zainab & Zhang, Zhixin, 2022. "Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture," Applied Energy, Elsevier, vol. 309(C).
    7. Mandley, S.J. & Daioglou, V. & Junginger, H.M. & van Vuuren, D.P. & Wicke, B., 2020. "EU bioenergy development to 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    8. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.
    9. Charles Bronzo Barbosa Farias & Robson Carmelo Santos Barreiros & Milena Fernandes da Silva & Alessandro Alberto Casazza & Attilio Converti & Leonie Asfora Sarubbo, 2022. "Use of Hydrogen as Fuel: A Trend of the 21st Century," Energies, MDPI, vol. 15(1), pages 1-20, January.
    10. Ho, William & Ma, Xin, 2018. "The state-of-the-art integrations and applications of the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 267(2), pages 399-414.
    11. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleftherios Thalassinos & Kesra Nermend & Anna Borawska, 2023. "Editorial Note: Decision Making in Resource Management: Exploring Problems, Methods, and Tools," Resources, MDPI, vol. 12(9), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    3. Wolff, Michael & Becker, Tristan & Walther, Grit, 2023. "Long-term design and analysis of renewable fuel supply chains – An integrated approach considering seasonal resource availability," European Journal of Operational Research, Elsevier, vol. 304(2), pages 745-762.
    4. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    5. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    6. Oliver Stein & Nathan Sudermann-Merx, 2016. "The Cone Condition and Nonsmoothness in Linear Generalized Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 687-709, August.
    7. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    8. Anastasiou Athanasios & Kalligosfyris Charalampos & Kalamara Eleni, 2022. "Assessing the effectiveness of tax administration in macroeconomic stability: evidence from 26 European Countries," Economic Change and Restructuring, Springer, vol. 55(4), pages 2237-2261, November.
    9. Peter Fernandes Wanke & Rebecca de Mattos, 2014. "Capacity Issues and Efficiency Drivers in Brazilian Bulk Terminals," Brazilian Business Review, Fucape Business School, vol. 11(5), pages 72-98, October.
    10. Mohammad Nourani & Qian Long Kweh & Evelyn Shyamala Devadason & V.G.R. Chandran, 2020. "A decomposition analysis of managerial efficiency for the insurance companies: A data envelopment analysis approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(6), pages 885-901, September.
    11. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    12. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    13. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    14. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    15. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    16. A. M. Aldanondo & V. L. Casasnovas, 2015. "Input aggregation bias in technical efficiency with multiple criteria analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 22(6), pages 430-435, April.
    17. Yan Jia & Junfeng Wang & Xin Han & Haiqi Tang & Xiaoling Xiao, 2023. "Application and Performance Evaluation of Industrial Internet Platform in Power Generation Equipment Industry," Sustainability, MDPI, vol. 15(20), pages 1-30, October.
    18. Khushalani, Jaya & Ozcan, Yasar A., 2017. "Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA)," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 15-23.
    19. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    20. Subhash C. Ray & Lei Chen, 2015. "Data Envelopment Analysis for Performance Evaluation: A Child’s Guide," Springer Books, in: Subhash C. Ray & Subal C. Kumbhakar & Pami Dua (ed.), Benchmarking for Performance Evaluation, edition 127, chapter 0, pages 75-116, Springer.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:4:p:48-:d:1120240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.