IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i12p121-d1002786.html
   My bibliography  Save this article

Magnetic Separation and Enrichment of Fe–Ti Oxides from Iron Titaniferous Beach Sands: Process Design Applied to Coastal Ecuador

Author

Listed:
  • Willam Trujillo

    (Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador)

  • Joseph Cobo

    (Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
    École Nationale Supérieure en Génie des Technologies Industrielles (ENGSTI), Université de Pau et des Pays de l’Adour, 64000 Pau, France)

  • Dayanna Vera-Cedeño

    (Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador)

  • Alex Palma-Cando

    (Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador)

  • Jorge Toro-Álava

    (Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Earth, Energy and Environmental Sciences, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador)

  • Alfredo Viloria

    (Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador)

  • Marvin Ricaurte

    (Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador)

Abstract

Iron titaniferous sands, also called black sands, are a source of various magnetic minerals, such as iron and titanium (Fe–Ti) oxides, with countless scientific and industrial applications. Ecuador is deemed a geo-diverse country that contains deposits of black sands in the Andean and coastal regions; therefore, the industrialization of these magnetic sands might be of high interest. This study presents a preliminary industrial design for the magnetic separation process of Fe–Ti oxides from iron titaniferous Ecuadorian beach sands. Four stages are considered for the process, involving collecting, drying, screening, and magnetic separation. This proposal returns the large particles (>150 μm) and the non-magnetic fraction to the original place, generating a minimum environmental impact with the support of natural marine and coastal processes. The process design criteria are based on engineering guidelines, sampling, and characterization of eleven black sand samples. Using conventional techniques, the water content, granulometric distribution, particle size, and semi-quantitative Fe–Ti oxide concentration were determined for the different sand samples. It is estimated that Fe–Ti oxide production may reach 5.835 metric tons per day (5.835 mtpd) with a magnetic content of 97.50%, starting from 100 mtpd of black sands. Based on an economic analysis (Class V), a net profit of USD 835,875.63 is expected during the first year of production. Thus, the magnetic separation and enrichment of Fe–Ti oxides from iron titaniferous coastal sands exploitation should allow the commercial valorization of these resources in an eco-friendly way, i.e., with economic benefits and minimization of environmental impact in the source area.

Suggested Citation

  • Willam Trujillo & Joseph Cobo & Dayanna Vera-Cedeño & Alex Palma-Cando & Jorge Toro-Álava & Alfredo Viloria & Marvin Ricaurte, 2022. "Magnetic Separation and Enrichment of Fe–Ti Oxides from Iron Titaniferous Beach Sands: Process Design Applied to Coastal Ecuador," Resources, MDPI, vol. 11(12), pages 1-14, December.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:12:p:121-:d:1002786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/12/121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/12/121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bryan Carrasco & Edward Ávila & Alfredo Viloria & Marvin Ricaurte, 2021. "Shrinking-Core Model Integrating to the Fluid-Dynamic Analysis of Fixed-Bed Adsorption Towers for H 2 S Removal from Natural Gas," Energies, MDPI, vol. 14(17), pages 1-16, September.
    2. Marvin Ricaurte & Paola E. Ordóñez & Carlos Navas-Cárdenas & Miguel A. Meneses & Juan P. Tafur & Alfredo Viloria, 2022. "Industrial Processes Online Teaching: A Good Practice for Undergraduate Engineering Students in Times of COVID-19," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    3. Marius Dan Gavriletea, 2017. "Environmental Impacts of Sand Exploitation. Analysis of Sand Market," Sustainability, MDPI, vol. 9(7), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darwin Ortiz & Damián Calderón & Alfredo Viloria & Marvin Ricaurte, 2023. "A Techno-Economic Analysis of Natural Gas Valuation in the Amazon Region to Increase the Liquefied Petroleum Gas (LPG) Production in Ecuador," Resources, MDPI, vol. 12(8), pages 1-21, August.
    2. Dimitrios Vlachopoulos & Rannveig Björk Thorkelsdóttir & Despoina Schina & Jóna Guðrún Jónsdóttir, 2023. "Teachers’ Experience and Perceptions of Sustainable Digitalization in School Education: An Existential Phenomenological Study of Teachers in Romania, Greece, Cyprus, Iceland, and The Netherlands," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    3. Walter Leal Filho & Julian Hunt & Alexandros Lingos & Johannes Platje & Lara Werncke Vieira & Markus Will & Marius Dan Gavriletea, 2021. "The Unsustainable Use of Sand: Reporting on a Global Problem," Sustainability, MDPI, vol. 13(6), pages 1-16, March.
    4. Rajiv Sinha & Kanchan Mishra & Priyesh Salunke & Vidya Sounderajan, 2023. "Sustainable Silt Management in the Lower Kosi River, North Bihar, India: Demand Assessment, Investment Model and Socio-Economic Development," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    5. Naveedh Ahmed S. & Le Hung Anh & Petra Schneider, 2020. "A DPSIR Assessment on Ecosystem Services Challenges in the Mekong Delta, Vietnam: Coping with the Impacts of Sand Mining," Sustainability, MDPI, vol. 12(22), pages 1-29, November.
    6. Alena Oulehlova & Irena Tušer & David Rehak, 2021. "Environmental Risk Assessment of a Diesel Fuel Tank: A Case Study," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    7. Jesús González & Liliana Martínez & Roberto Aguas & Jhon De La Hoz & Henry Sánchez, 2023. "Redesign and Implementation of the Electromagnetism Course for Engineering Students Using the Backward Design Methodology," Sustainability, MDPI, vol. 15(16), pages 1-14, August.
    8. John D. Morley & Rupert J. Myers & Yves Plancherel & Pablo R. Brito-Parada, 2022. "A Database for the Extraction, Trade, and Use of Sand and Gravel," Resources, MDPI, vol. 11(4), pages 1-16, April.
    9. Eduardo Francisco Silva & Darlisson Fernandes Bento & Anderson Conceição Mendes & Fábio Góis Mota & Luiz Carlos Silva Mota & Arthur Iven Tavares Fonseca & Rodolfo Maduro Almeida & Livaldo Oliveira San, 2020. "Environmental impacts of sand mining in the city of Santarém, Amazon region, Northern Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(1), pages 47-60, January.
    10. Dimitra Ioannidou & Guido Sonnemann & Sangwon Suh, 2020. "Do we have enough natural sand for low‐carbon infrastructure?," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1004-1015, October.
    11. Marvin Ricaurte & Paola E. Ordóñez & Carlos Navas-Cárdenas & Miguel A. Meneses & Juan P. Tafur & Alfredo Viloria, 2022. "Industrial Processes Online Teaching: A Good Practice for Undergraduate Engineering Students in Times of COVID-19," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    12. Clemens Mostert & Stefan Bringezu, 2022. "Biotic Part of the Product Material Footprint: Comparison of Indicators Regarding Their Interpretation and Applicability," Resources, MDPI, vol. 11(6), pages 1-16, June.
    13. John D. Morley & Rupert J. Myers & Yves Plancherel & Pablo R. Brito-Parada, 2022. "A Database for the Stocks and Flows of Sand and Gravel," Resources, MDPI, vol. 11(8), pages 1-17, August.
    14. Yugai Ma & Yingying Chai & Y. Jun Xu & Zijun Li & Shuwei Zheng, 2022. "Spatial and Temporal Changes of Sand Mining in the Yangtze River Basin since the Establishment of the Three Gorges Dam," IJERPH, MDPI, vol. 19(24), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:12:p:121-:d:1002786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.