IDEAS home Printed from https://ideas.repec.org/a/gam/jpubli/v8y2020i1p7-d315583.html
   My bibliography  Save this article

Reviewing Research Trends—A Scientometric Approach Using Gunshot Residue (GSR) Literature as an Example

Author

Listed:
  • Catarina Sobreira

    (Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee DD1 4HN, UK)

  • Joyce K. Klu

    (Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee DD1 4HN, UK)

  • Christian Cole

    (Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee DD1 4HN, UK)

  • Niamh Nic Daéid

    (Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee DD1 4HN, UK)

  • Hervé Ménard

    (Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee DD1 4HN, UK)

Abstract

The ability to manage, distil and disseminate the significant amount of information that is available from published literature is fast becoming a core and critical skill across all research domains, including that of forensic science. In this study, a simplified scientometric approach has been applied to available literature on gunshot residue (GSR) as a test evidence type aiming to evaluate publication trends and explore the interconnectivity between authors. A total of 731 publications were retrieved using the search engine ‘Scopus’ and come from 1589 known authors, of whom 401 contributed to more than one research output on this subject. Out of the total number of publications, only 35 (4.8%) were found to be Open Access (OA). The Compound Annual Growth Rate (CAGR) for years 2006 and 2016 reveals a much higher growth in publications relating to GSR (8.0%) than the benchmark annual growth rate of 3.9%. The distribution of a broad spectrum of keywords generated from the publications confirms a historical trend, in particular regarding the use of analytical techniques, in the study of gunshot residue. The results inform how relevant information extracted from a bibliometric search can be used to explore, analyse and define new research areas.

Suggested Citation

  • Catarina Sobreira & Joyce K. Klu & Christian Cole & Niamh Nic Daéid & Hervé Ménard, 2020. "Reviewing Research Trends—A Scientometric Approach Using Gunshot Residue (GSR) Literature as an Example," Publications, MDPI, vol. 8(1), pages 1-17, February.
  • Handle: RePEc:gam:jpubli:v:8:y:2020:i:1:p:7-:d:315583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2304-6775/8/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2304-6775/8/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John P A Ioannidis, 2005. "Why Most Published Research Findings Are False," PLOS Medicine, Public Library of Science, vol. 2(8), pages 1-1, August.
    2. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    3. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Kirby, 2023. "Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool," Publications, MDPI, vol. 11(1), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toshiyuki Hasumi & Mei-Shiu Chiu, 2022. "Online mathematics education as bio-eco-techno process: bibliometric analysis using co-authorship and bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4631-4654, August.
    2. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    3. Liu, Jialin & Chen, Hongkan & Liu, Zhibo & Bu, Yi & Gu, Weiye, 2022. "Non-linearity between referencing behavior and citation impact: A large-scale, discipline-level analysis," Journal of Informetrics, Elsevier, vol. 16(3).
    4. Dag W. Aksnes & Liv Langfeldt & Paul Wouters, 2019. "Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories," SAGE Open, , vol. 9(1), pages 21582440198, February.
    5. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    6. Valentina Ndou & Gioconda Mele & Eglantina Hysa & Otilia Manta, 2022. "Exploiting Technology to Deal with the COVID-19 Challenges in Travel & Tourism: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    7. Cannavacciuolo, Lorella & Ferraro, Giovanna & Ponsiglione, Cristina & Primario, Simonetta & Quinto, Ivana, 2023. "Technological innovation-enabling industry 4.0 paradigm: A systematic literature review," Technovation, Elsevier, vol. 124(C).
    8. Mariani, Marcello & Borghi, Matteo, 2019. "Industry 4.0: A bibliometric review of its managerial intellectual structure and potential evolution in the service industries," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    9. Secundo, Giustina & Ndou, Valentina & Vecchio, Pasquale Del & De Pascale, Gianluigi, 2020. "Sustainable development, intellectual capital and technology policies: A structured literature review and future research agenda," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Yao, Ye & Du, Huibin & Zou, Hongyang & Zhou, Peng & Antunes, Carlos Henggeler & Neumann, Anne & Yeh, Sonia, 2023. "Fifty years of Energy Policy: A bibliometric overview," Energy Policy, Elsevier, vol. 183(C).
    11. Tahamtan, Iman & Bornmann, Lutz, 2018. "Creativity in science and the link to cited references: Is the creative potential of papers reflected in their cited references?," Journal of Informetrics, Elsevier, vol. 12(3), pages 906-930.
    12. Judit Dobránszki & Jaime A. Teixeira da Silva, 2019. "Corrective factors for author- and journal-based metrics impacted by citations to accommodate for retractions," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(1), pages 387-398, October.
    13. Yong Huang & Yi Bu & Ying Ding & Wei Lu, 2018. "Number versus structure: towards citing cascades," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 2177-2193, December.
    14. Rabishankar Giri & Sabuj Kumar Chaudhuri, 2021. "Ranking journals through the lens of active visibility," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2189-2208, March.
    15. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    16. Akinpelu, O.A. & Olaleye, O. & Fagbola, O., 2023. "The Soil Organic Matter Decomposers: A Bibliometric Analysis," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 9(4), August.
    17. Jyotirmoy Sarkar, 2018. "Will P†Value Triumph over Abuses and Attacks?," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 7(4), pages 66-71, July.
    18. Rey-Long Liu, 2017. "A new bibliographic coupling measure with descriptive capability," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 915-935, February.
    19. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    20. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jpubli:v:8:y:2020:i:1:p:7-:d:315583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.