IDEAS home Printed from https://ideas.repec.org/a/gam/jpubli/v10y2022i2p17-d785887.html
   My bibliography  Save this article

RecSys Pertaining to Research Information with Collaborative Filtering Methods: Characteristics and Challenges

Author

Listed:
  • Otmane Azeroual

    (German Centre for Higher Education Research and Science Studies (DZHW), Schützenstraße 6a, 10117 Berlin, Germany)

  • Tibor Koltay

    (Institute of Learning Technologies, Eszterházy Károly Catholic University, HU-3300 Eger, Hungary)

Abstract

Recommendation (recommender) systems have played an increasingly important role in both research and industry in recent years. In the area of publication data, for example, there is a strong need to help people find the right research information through recommendations and scientific reports. The difference between search engines and recommendation systems is that search engines help us find something we already know, while recommendation systems are more likely to help us find new items. An essential function of recommendation systems is to support users in their decision making. Recommendation systems are information systems that can be categorized into decision support systems, as long as they are used for decision making and are intended to support people instead of replacing them. This paper deals with recommendation systems for research information, especially publication data. We discuss and analyze the challenges and peculiarities of implementing recommender systems for the scientific exchange of research information. For this purpose, data mining techniques are examined and a concept for a recommendation system for research information is developed. Our aim is to investigate to what extent a recommendation system based on a collaborative filtering approach with cookies is possible. The data source is publication data extracted from cookies in the Web of Science database. The results of our investigation show that a collaborative filtering process is suitable for publication data and that recommendations can be generated with user information. In addition, we have seen that collaborative filtering is an important element that can solve a practical problem by sifting through large amounts of dynamically generated information to provide users with personalized content and services.

Suggested Citation

  • Otmane Azeroual & Tibor Koltay, 2022. "RecSys Pertaining to Research Information with Collaborative Filtering Methods: Characteristics and Challenges," Publications, MDPI, vol. 10(2), pages 1-14, April.
  • Handle: RePEc:gam:jpubli:v:10:y:2022:i:2:p:17-:d:785887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2304-6775/10/2/17/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2304-6775/10/2/17/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    2. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    3. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    4. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    5. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    6. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    7. Klaus Gugler & Florian Szücs & Ulrich Wohak, 2023. "Start-up Acquisitions, Venture Capital and Innovation: A Comparative Study of Google, Apple, Facebook, Amazon and Microsoft," Department of Economics Working Papers wuwp340, Vienna University of Economics and Business, Department of Economics.
    8. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    9. Juan Shi & Kin Keung Lai & Ping Hu & Gang Chen, 2018. "Factors dominating individual information disseminating behavior on social networking sites," Information Technology and Management, Springer, vol. 19(2), pages 121-139, June.
    10. Ganesh Dash & Chetan Sharma & Shamneesh Sharma, 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    11. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    12. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    13. Gissler, Stefan & Oldfather, Jeremy & Ruffino, Doriana, 2016. "Lending on hold: Regulatory uncertainty and bank lending standards," Journal of Monetary Economics, Elsevier, vol. 81(C), pages 89-101.
    14. Wittek, Peter, 2013. "Two-way incremental seriation in the temporal domain with three-dimensional visualization: Making sense of evolving high-dimensional datasets," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 193-201.
    15. Alina Evstigneeva & Mark Sidorovskiy, 2021. "Assessment of Clarity of Bank of Russia Monetary Policy Communication by Neural Network Approach," Russian Journal of Money and Finance, Bank of Russia, vol. 80(3), pages 3-33, September.
    16. Arno de Caigny & Kristof Coussement & Koen W. de Bock & Stefan Lessmann, 2019. "Incorporating textual information in customer churn prediction models based on a convolutional neural network," Post-Print hal-02275958, HAL.
    17. Hei-Chia Wang & Tzu-Ting Hsu & Yunita Sari, 2019. "Personal research idea recommendation using research trends and a hierarchical topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1385-1406, December.
    18. Borke, Lukas & Härdle, Wolfgang Karl, 2016. "Q3-D3-Lsa," SFB 649 Discussion Papers 2016-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Hiroaki Sugino & Tatsuya Sekiguchi & Yuuki Terada & Naoki Hayashi, 2023. "“Future Compass”, a Tool That Allows Us to See the Right Horizon—Integration of Topic Modeling and Multiple-Factor Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    20. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jpubli:v:10:y:2022:i:2:p:17-:d:785887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.