IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i8p878-d537238.html
   My bibliography  Save this article

Hybrid Nanofluid Flow over a Permeable Shrinking Sheet Embedded in a Porous Medium with Radiation and Slip Impacts

Author

Listed:
  • Shahirah Abu Bakar

    (Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
    These authors contributed equally to this work.)

  • Norihan Md Arifin

    (Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
    These authors contributed equally to this work.)

  • Najiyah Safwa Khashi’ie

    (Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
    These authors contributed equally to this work.)

  • Norfifah Bachok

    (Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
    Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
    These authors contributed equally to this work.)

Abstract

The study of hybrid nanofluid and its thermophysical properties is emerging since the early of 2000s and the purpose of this paper is to investigate the flow of hybrid nanofluid over a permeable Darcy porous medium with slip, radiation and shrinking sheet. Here, the hybrid nanofluid consists of Cu/water as the base nanofluid and Al 2 O 3 –Cu/water works as the two distinct fluids. The governing ordinary differential equations (ODEs) obtained in this study are converted from a series of partial differential equations (PDEs) by the appropriate use of similarity transformation. Two methods of shooting and bvp4c function are applied to solve the involving physical parameters over the hybrid nanofluid flow. From this study, we conclude that the non-uniqueness of solutions exists through a range of the shrinking parameter, which produces the problem of finding a bigger solution than any other between the upper and lower branches. From the analysis, one can observe the increment of heat transfer rate in hybrid nanofluid versus the traditional nanofluid. The results obtained by the stability of solutions prove that the upper solution (first branch) is stable and the lower solution (second branch) is not stable.

Suggested Citation

  • Shahirah Abu Bakar & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Norfifah Bachok, 2021. "Hybrid Nanofluid Flow over a Permeable Shrinking Sheet Embedded in a Porous Medium with Radiation and Slip Impacts," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:878-:d:537238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/8/878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/8/878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saidur, R. & Leong, K.Y. & Mohammad, H.A., 2011. "A review on applications and challenges of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1646-1668, April.
    2. Sundar, L. Syam & Sharma, K.V. & Singh, Manoj K. & Sousa, A.C.M., 2017. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 185-198.
    3. Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2019. "Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink," Energies, MDPI, vol. 12(5), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bommana Lavanya & Jorige Girish Kumar & Macherla Jayachandra Babu & Chakravarthula Sivakrishnam Raju & Nehad Ali Shah & Prem Junsawang, 2022. "Irreversibility Analysis in the Ethylene Glycol Based Hybrid Nanofluid Flow amongst Expanding/Contracting Walls When Quadratic Thermal Radiation and Arrhenius Activation Energy Are Significant," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    2. Hatem Gasmi & Umair Khan & Aurang Zaib & Anuar Ishak & Sayed M. Eldin & Zehba Raizah, 2022. "Analysis of Mixed Convection on Two-Phase Nanofluid Flow Past a Vertical Plate in Brinkman-Extended Darcy Porous Medium with Nield Conditions," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    3. Syafiq Zainodin & Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2022. "MHD Mixed Convection of Hybrid Ferrofluid Flow over an Exponentially Stretching/Shrinking Surface with Heat Source/Sink and Velocity Slip," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    4. Mohamed R. Eid, 2022. "3-D Flow of Magnetic Rotating Hybridizing Nanoliquid in Parabolic Trough Solar Collector: Implementing Cattaneo-Christov Heat Flux Theory and Centripetal and Coriolis Forces," Mathematics, MDPI, vol. 10(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    2. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    5. Abu Shadate Faisal Mahamude & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Kaniz Farhana & Khalid Saleh & Talal Yusaf, 2022. "Experimental Study on the Efficiency Improvement of Flat Plate Solar Collectors Using Hybrid Nanofluids Graphene/Waste Cotton," Energies, MDPI, vol. 15(7), pages 1, March.
    6. Salman, B.H. & Mohammed, H.A. & Munisamy, K.M. & Kherbeet, A. Sh., 2013. "Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 848-880.
    7. Syahira Mansur & Anuar Ishak & Ioan Pop, 2015. "The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    8. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    9. M. Z. Saghir & M. M. Rahman, 2020. "Forced Convection of Al 2 O 3 –Cu, TiO 2 –SiO 2 , FWCNT–Fe 3 O 4 , and ND–Fe 3 O 4 Hybrid Nanofluid in Porous Media," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Aftab, A. & Ismail, A.R. & Ibupoto, Z.H. & Akeiber, H. & Malghani, M.G.K., 2017. "Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1301-1313.
    11. Nor Azizah Yacob & Nor Fadhilah Dzulkifli & Siti Nur Alwani Salleh & Anuar Ishak & Ioan Pop, 2021. "Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface," Mathematics, MDPI, vol. 10(1), pages 1-20, December.
    12. Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
    13. Abdin, Z. & Alim, M.A. & Saidur, R. & Islam, M.R. & Rashmi, W. & Mekhilef, S. & Wadi, A., 2013. "Solar energy harvesting with the application of nanotechnology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 837-852.
    14. Sharma, A. & Tripathi, D. & Sharma, R.K. & Tiwari, A.K., 2019. "Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    16. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    17. Mikhail A. Sheremet, 2021. "Numerical Simulation of Convective-Radiative Heat Transfer," Energies, MDPI, vol. 14(17), pages 1-3, August.
    18. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    19. Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
    20. Mahian, Omid & Mahmud, Shohel & Heris, Saeed Zeinali, 2012. "Analysis of entropy generation between co-rotating cylinders using nanofluids," Energy, Elsevier, vol. 44(1), pages 438-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:878-:d:537238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.