IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2021i1p7-d707383.html
   My bibliography  Save this article

Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface

Author

Listed:
  • Nor Azizah Yacob

    (Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang, Jengka 26460, Pahang, Malaysia)

  • Nor Fadhilah Dzulkifli

    (Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Pahang, Jengka 26460, Pahang, Malaysia)

  • Siti Nur Alwani Salleh

    (Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA Kedah, Merbok 08400, Kedah, Malaysia)

  • Anuar Ishak

    (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Ioan Pop

    (Department of Mathematics, Babeş-Bolyai University, 400578 Cluj-Napoca, Romania)

Abstract

The steady three-dimensional rotating flow past a stretching/shrinking surface in water and kerosene-based nanofluids containing single and multi-walled carbon nanotubes (CNTs) is investigated. The governing equations are converted to similarity equations, and then numerically solved using MATLAB software. The impacts of rotational, suction, and nanoparticle volume fraction on the flow and the thermal fields, as well as velocity and temperature gradients at the surface, are represented graphically and are analyzed. Further, the friction factor and the heat transfer rate for different parameters are presented in tables. It is found that the heat transfer rate increases with increasing nanoparticle volume fraction as well as suction parameter in water and kerosene-based nanofluids of single and multi-walled CNTs. However, the increment in the rotating flow parameter decreases the rate of heat transfer. Multi-walled carbon nanotubes and kerosene-based nanofluid contribute to heat transfer rates better than single-walled carbon nanotubes and water-based nanofluid, respectively. A unique solution exists for the stretching surface, while two solutions are obtained for the shrinking surface. Further analysis of their stabilities shows that only one of them is stable over time.

Suggested Citation

  • Nor Azizah Yacob & Nor Fadhilah Dzulkifli & Siti Nur Alwani Salleh & Anuar Ishak & Ioan Pop, 2021. "Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface," Mathematics, MDPI, vol. 10(1), pages 1-20, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2021:i:1:p:7-:d:707383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2019. "Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink," Energies, MDPI, vol. 12(5), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bagh Ali & N. Ameer Ahammad & Aziz Ullah Awan & Abayomi S. Oke & ElSayed M. Tag-ElDin & Farooq Ahmed Shah & Sonia Majeed, 2022. "The Dynamics of Water-Based Nanofluid Subject to the Nanoparticle’s Radius with a Significant Magnetic Field: The Case of Rotating Micropolar Fluid," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    2. Walid Aich & Fatih Selimefendigil & Badreddine Ayadi & Lotfi Ben Said & Badr M. Alshammari & Lioua Kolsi & Sid Ali Betrouni & Hatem Gasmi, 2022. "Application and CFD-Based Optimization of a Novel Porous Object for Confined Slot Jet Impingement Cooling Systems under a Magnetic Field," Mathematics, MDPI, vol. 10(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikhail A. Sheremet, 2021. "Numerical Simulation of Convective-Radiative Heat Transfer," Energies, MDPI, vol. 14(17), pages 1-3, August.
    2. Nadhirah Abdul Halim & Noor Fadiya Mohd Noor, 2021. "Mixed Convection Flow of Powell–Eyring Nanofluid near a Stagnation Point along a Vertical Stretching Sheet," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    3. Shahirah Abu Bakar & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Norfifah Bachok, 2021. "Hybrid Nanofluid Flow over a Permeable Shrinking Sheet Embedded in a Porous Medium with Radiation and Slip Impacts," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    4. Syafiq Zainodin & Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2022. "MHD Mixed Convection of Hybrid Ferrofluid Flow over an Exponentially Stretching/Shrinking Surface with Heat Source/Sink and Velocity Slip," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    5. Naganthran, Kohilavani & Basir, Md Faisal Md & Kasihmuddin, Mohd Shareduwan Mohd & Ahmed, Sameh E. & Olumide, Falodun Bidemi & Nazar, Roslinda, 2020. "Exploration of dilatant nanofluid effects conveying microorganism utilizing scaling group analysis: FDM Blottner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Yasir Nawaz & Muhammad Shoaib Arif & Wasfi Shatanawi & Amna Nazeer, 2021. "An Explicit Fourth-Order Compact Numerical Scheme for Heat Transfer of Boundary Layer Flow," Energies, MDPI, vol. 14(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2021:i:1:p:7-:d:707383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.