IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2868-d676943.html
   My bibliography  Save this article

Adaptation of Residual-Error Series Algorithm to Handle Fractional System of Partial Differential Equations

Author

Listed:
  • Hussam Aljarrah

    (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia)

  • Mohammad Alaroud

    (Department of Mathematics, Faculty of Arts and Science, Amman Arab University, Amman 11953, Jordan)

  • Anuar Ishak

    (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia)

  • Maslina Darus

    (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia)

Abstract

In this article, an attractive numeric–analytic algorithm, called the fractional residual power series algorithm, is implemented for predicting the approximate solutions for a certain class of fractional systems of partial differential equations in terms of Caputo fractional differentiability. The solution methodology combines the residual function and the fractional Taylor’s formula. In this context, the proposed algorithm provides the unknown coefficients of the expansion series for the governed system by a straightforward pattern as well as it presents the solutions in a systematic manner without including any restrictive conditions. To enhance the theoretical framework, some numerical examples are tested and discussed to detect the simplicity, performance, and applicability of the proposed algorithm. Numerical simulations and graphical plots are provided to check the impact of the fractional order on the geometric behavior of the fractional residual power series solutions. Moreover, the efficiency of this algorithm is discussed by comparing the obtained results with other existing methods such as Laplace Adomian decomposition and Iterative methods. Simulation of the results shows that the fractional residual power series technique is an accurate and very attractive tool to obtain the solutions for nonlinear fractional partial differential equations that occur in applied mathematics, physics, and engineering.

Suggested Citation

  • Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2021. "Adaptation of Residual-Error Series Algorithm to Handle Fractional System of Partial Differential Equations," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2868-:d:676943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    2. Al-Smadi, Mohammed & Arqub, Omar Abu & Zeidan, Dia, 2021. "Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: Theorems and applications," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Al-Smadi, Mohammed & Arqub, Omar Abu, 2019. "Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 280-294.
    4. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    5. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Hasan, Shatha & Al-Smadi, Mohammed & El-Ajou, Ahmad & Momani, Shaher & Hadid, Samir & Al-Zhour, Zeyad, 2021. "Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Mohammad Alaroud & Mohammed Al-Smadi & Rokiah Rozita Ahmad & Ummul Khair Salma Din, 2018. "Computational Optimization of Residual Power Series Algorithm for Certain Classes of Fuzzy Fractional Differential Equations," International Journal of Differential Equations, Hindawi, vol. 2018, pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    2. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    3. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    4. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    5. Fan Yang & Ping Fan & Xiao-Xiao Li & Xin-Yi Ma, 2019. "Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source," Mathematics, MDPI, vol. 7(9), pages 1-13, September.
    6. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    7. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    8. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    9. Schumer, Rina & Baeumer, Boris & Meerschaert, Mark M., 2011. "Extremal behavior of a coupled continuous time random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(3), pages 505-511.
    10. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    11. Langlands, T.A.M., 2006. "Solution of a modified fractional diffusion equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 136-144.
    12. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    13. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    14. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    15. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    16. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    17. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    18. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    19. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    20. Hosseiny, Ali & Gallegati, Mauro, 2017. "Role of intensive and extensive variables in a soup of firms in economy to address long run prices and aggregate data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 51-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2868-:d:676943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.