IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2509-d651016.html
   My bibliography  Save this article

Investigation of Drift Phenomena at the Pore Scale during Flow and Transport in Porous Media

Author

Listed:
  • Ibrahim Ayuba

    (School of Engineering, University of Aberdeen King’s College, Aberdeen AB24 3FX, UK)

  • Lateef T. Akanji

    (School of Engineering, University of Aberdeen King’s College, Aberdeen AB24 3FX, UK)

  • Jefferson L. Gomes

    (School of Engineering, University of Aberdeen King’s College, Aberdeen AB24 3FX, UK)

  • Gabriel K. Falade

    (Department of Petroleum Engineering, University of Ibadan, Ibadan 200284, Nigeria)

Abstract

This paper reports an analytical study conducted to investigate the behaviour of tracers undergoing creeping flow between two parallel plates in porous media. A new coupled model for the characterisation of fluid flow and transport of tracers at pore scale is formulated. Precisely, a weak-form solution of radial transport of tracers under convection–diffusion-dominated flow is established using hypergeometric functions. The velocity field associated with the radial transport is informed by the solution of the Stokes equations. Channel thickness as a function of velocities, maximum Reynolds number of each thickness as a function of maximum velocities and concentration profile for different drift and dispersion coefficients are computed and analysed. Analysis of the simulation results reveals that the dispersion coefficient appears to be a significant factor controlling the concentration distribution of the tracer at pore scale. Further analysis shows that the drift coefficient appears to influence tracer concentration distribution but only after a prolonged period. This indicates that even at pore scale, tracer drift characteristics can provide useful information about the flow and transport properties of individual pores in porous media.

Suggested Citation

  • Ibrahim Ayuba & Lateef T. Akanji & Jefferson L. Gomes & Gabriel K. Falade, 2021. "Investigation of Drift Phenomena at the Pore Scale during Flow and Transport in Porous Media," Mathematics, MDPI, vol. 9(19), pages 1-36, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2509-:d:651016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2509/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2509/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. P. Gaver, 1966. "Observing Stochastic Processes, and Approximate Transform Inversion," Operations Research, INFORMS, vol. 14(3), pages 444-459, June.
    2. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Yan & Dassios, Angelos & Zhao, Hongbiao, 2021. "Random variate generation for exponential and gamma tilted stable distributions," LSE Research Online Documents on Economics 108593, London School of Economics and Political Science, LSE Library.
    2. Efstathios Avdis & Ward Whitt, 2007. "Power Algorithms for Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 341-355, August.
    3. Joseph Abate & Ward Whitt, 2006. "A Unified Framework for Numerically Inverting Laplace Transforms," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 408-421, November.
    4. Dassios, Angelos & Qu, Yan & Zhao, Hongbiao, 2018. "Exact simulation for a class of tempered stable," LSE Research Online Documents on Economics 86981, London School of Economics and Political Science, LSE Library.
    5. Richard L. Warr & Cason J. Wight, 2020. "Error Bounds for Cumulative Distribution Functions of Convolutions via the Discrete Fourier Transform," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 881-904, September.
    6. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    7. He, Gang & Wu, Wenqing & Zhang, Yuanyuan, 2018. "Analysis of a multi-component system with failure dependency, N-policy and vacations," Operations Research Perspectives, Elsevier, vol. 5(C), pages 191-198.
    8. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. David H Collins & Richard L Warr & Aparna V Huzurbazar, 2013. "An introduction to statistical flowgraph models for engineering systems," Journal of Risk and Reliability, , vol. 227(5), pages 461-470, October.
    10. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    11. Joseph Abate & Ward Whitt, 1999. "Computing Laplace Transforms for Numerical Inversion Via Continued Fractions," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 394-405, November.
    12. Dassios, Angelos & Zhang, You You, 2016. "The joint distribution of Parisian and hitting times of the Brownian motion with application to Parisian option pricing," LSE Research Online Documents on Economics 64959, London School of Economics and Political Science, LSE Library.
    13. Dirk Becherer & Todor Bilarev & Peter Frentrup, 2018. "Optimal liquidation under stochastic liquidity," Finance and Stochastics, Springer, vol. 22(1), pages 39-68, January.
    14. John F. Shortle & Martin J. Fischer & Percy H. Brill, 2007. "Waiting-Time Distribution of M/D N /1 Queues Through Numerical Laplace Inversion," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 112-120, February.
    15. Jeffrey P. Kharoufeh & Natarajan Gautam, 2004. "A fluid queueing model for link travel time moments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(2), pages 242-257, March.
    16. Rama Cont & Sasha Stoikov & Rishi Talreja, 2010. "A Stochastic Model for Order Book Dynamics," Operations Research, INFORMS, vol. 58(3), pages 549-563, June.
    17. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    18. Abdel Belkaid & Frederic Utzet, 2017. "Efficient Computation of First Passage Times in Kou’s Jump-diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 957-971, September.
    19. Steven Kou & Cindy Yu & Haowen Zhong, 2017. "Jumps in Equity Index Returns Before and During the Recent Financial Crisis: A Bayesian Analysis," Management Science, INFORMS, vol. 63(4), pages 988-1010, April.
    20. J. Li & A. Metzler & R. M. Reesor, 2017. "A structural framework for modelling contingent capital," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1071-1088, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2509-:d:651016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.