IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2439-d648189.html
   My bibliography  Save this article

Shadowed Type-2 Fuzzy Systems for Dynamic Parameter Adaptation in Harmony Search and Differential Evolution for Optimal Design of Fuzzy Controllers

Author

Listed:
  • Oscar Castillo

    (Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22379, Mexico)

  • Cinthia Peraza

    (Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22379, Mexico)

  • Patricia Ochoa

    (Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22379, Mexico)

  • Leticia Amador-Angulo

    (Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22379, Mexico)

  • Patricia Melin

    (Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22379, Mexico)

  • Yongjin Park

    (Department of Transportation Engineering, Keimyung University, Daegu 42601, Korea)

  • Zong Woo Geem

    (College of IT Convergence, Gachon University, Seongnam 13120, Korea)

Abstract

This article mainly focuses on the utilization of shadowed type-2 fuzzy systems used to achieve the goal of dynamically adapting the parameters of two already known algorithms in the literature: the harmony search and the differential evolution algorithms. It has already been established that type-2 fuzzy logic enhances the performance of metaheuristics by enabling parameter adaptation; however, the utilization of fuzzy logic results in an increased execution time. For this reason, in this article, the shadowed type-2 fuzzy approach is put forward as a way of reducing execution time, while maintaining the good results that the complete type-2 fuzzy model produces. The harmony search and differential evolution algorithms with shadowed type-2 parameter adaptations were applied to the problem of optimally designing fuzzy controllers. The simulations were performed with the controllers working in an ideal situation, and then with a real situation under different noise levels in order to reach a conclusion regarding the performance of each of the algorithms that were applied.

Suggested Citation

  • Oscar Castillo & Cinthia Peraza & Patricia Ochoa & Leticia Amador-Angulo & Patricia Melin & Yongjin Park & Zong Woo Geem, 2021. "Shadowed Type-2 Fuzzy Systems for Dynamic Parameter Adaptation in Harmony Search and Differential Evolution for Optimal Design of Fuzzy Controllers," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2439-:d:648189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmadianfar, Iman & Kheyrandish, Ali & Jamei, Mehdi & Gharabaghi, Bahram, 2021. "Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm," Renewable Energy, Elsevier, vol. 167(C), pages 774-790.
    2. K. Z. Gao & P. N. Suganthan & Q. K. Pan & T. J. Chua & T. X. Cai & C. S. Chong, 2016. "Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 363-374, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Zhang, Xufan & Zhang, Jian & Xu, Hui & Zhou, Hongxing, 2023. "Regulating outflow temperature for multi-objective operation of cascade reservoirs: A case study," Renewable Energy, Elsevier, vol. 211(C), pages 155-165.
    2. Iman Ahmadianfar & Bijay Halder & Salim Heddam & Leonardo Goliatt & Mou Leong Tan & Zulfaqar Sa’adi & Zainab Al-Khafaji & Raad Z. Homod & Tarik A. Rashid & Zaher Mundher Yaseen, 2023. "An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems," Sustainability, MDPI, vol. 15(3), pages 1-28, January.
    3. Hongfeng Wang & Min Huang & Junwei Wang, 2019. "An effective metaheuristic algorithm for flowshop scheduling with deteriorating jobs," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2733-2742, October.
    4. Ploussard, Quentin & Veselka, Thomas D. & Oikonomou, Konstantinos & Voisin, Nathalie, 2022. "Hydro-economics tradeoff surfaces to guide unit commitment in production cost models," Applied Energy, Elsevier, vol. 324(C).
    5. Rashid, Muhammad Usman & Abid, Irfan & Latif, Abid, 2022. "Optimization of hydropower and related benefits through Cascade Reservoirs for sustainable economic growth," Renewable Energy, Elsevier, vol. 185(C), pages 241-254.
    6. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    7. Jia Chen, 2021. "Long-Term Joint Operation of Cascade Reservoirs Using Enhanced Progressive Optimality Algorithm and Dynamic Programming Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2265-2279, May.
    8. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    9. Zheng, Zhi-xin & Li, Jun-qing & Duan, Pei-yong, 2019. "Optimal chiller loading by improved artificial fish swarm algorithm for energy saving," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 227-243.
    10. Fei Luan & Zongyan Cai & Shuqiang Wu & Tianhua Jiang & Fukang Li & Jia Yang, 2019. "Improved Whale Algorithm for Solving the Flexible Job Shop Scheduling Problem," Mathematics, MDPI, vol. 7(5), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2439-:d:648189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.