IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1607-d590435.html
   My bibliography  Save this article

Parameter and Order Identification of Fractional Systems with Application to a Lithium-Ion Battery

Author

Listed:
  • Oliver Stark

    (Faculty of Electrical Engineering and Information Technology, Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Martin Pfeifer

    (Faculty of Electrical Engineering and Information Technology, Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

  • Sören Hohmann

    (Faculty of Electrical Engineering and Information Technology, Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany)

Abstract

This paper deals with a method for the parameter and order identification of a fractional model. In contrast to existing approaches that can either handle noisy observations of the output signal or systems that are not at rest, the proposed method does not have to compromise between these two characteristics. To handle systems that are not at rest, the parameter, as well as the order identification, are based on the modulating function method. The novelty of the proposed method is that an optimization-based approach is used for the order identification. Thus, even if only noisy observations of the output signal are available, an approximate identification can be performed. The proposed identification method is, then, applied to identify the parameters and orders of a lithium-ion battery model. The experimental results illustrate the practical usefulness and verify the validity of our approach.

Suggested Citation

  • Oliver Stark & Martin Pfeifer & Sören Hohmann, 2021. "Parameter and Order Identification of Fractional Systems with Application to a Lithium-Ion Battery," Mathematics, MDPI, vol. 9(14), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1607-:d:590435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1607/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Minghui & Li, Yunxiao & Li, Shuxian & Fu, Chunyun & Qin, Datong & Li, Zonghua, 2018. "Lithium-ion battery modeling and parameter identification based on fractional theory," Energy, Elsevier, vol. 165(PB), pages 153-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Guo & Xiaobo Wu & António M. Lopes & Anyu Cheng & Yang Xu & Liping Chen, 2022. "Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic–Fractional Beetle Swarm Optimization Method," Mathematics, MDPI, vol. 10(17), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    2. He, Xitian & Sun, Bingxiang & Zhang, Weige & Fan, Xinyuan & Su, Xiaojia & Ruan, Haijun, 2022. "Multi-time scale variable-order equivalent circuit model for virtual battery considering initial polarization condition of lithium-ion battery," Energy, Elsevier, vol. 244(PB).
    3. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    4. Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
    5. Ji’ang Zhang & Ping Wang & Yushu Liu & Ze Cheng, 2021. "Variable-Order Equivalent Circuit Modeling and State of Charge Estimation of Lithium-Ion Battery Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 14(3), pages 1-20, February.
    6. Ahmed Fathy & Dalia Yousri & Abdullah G. Alharbi & Mohammad Ali Abdelkareem, 2023. "A New Hybrid White Shark and Whale Optimization Approach for Estimating the Li-Ion Battery Model Parameters," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    7. Aissa Benhammou & Mohammed Amine Hartani & Hamza Tedjini & Hegazy Rezk & Mujahed Al-Dhaifallah, 2023. "Improvement of Autonomy, Efficiency, and Stress of Fuel Cell Hybrid Electric Vehicle System Using Robust Controller," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    8. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    9. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
    10. Xiao, Feiyu & Xing, Bobin & Kong, Lingzhao & Xia, Yong, 2021. "Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries," Energy, Elsevier, vol. 230(C).
    11. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Ning Chen & Xu Zhao & Jiayao Chen & Xiaodong Xu & Peng Zhang & Weihua Gui, 2022. "Design of a Non-Linear Observer for SOC of Lithium-Ion Battery Based on Neural Network," Energies, MDPI, vol. 15(10), pages 1-26, May.
    13. Adrian Chmielewski & Jakub Możaryn & Piotr Piórkowski & Krzysztof Bogdziński, 2018. "Comparison of NARX and Dual Polarization Models for Estimation of the VRLA Battery Charging/Discharging Dynamics in Pulse Cycle," Energies, MDPI, vol. 11(11), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1607-:d:590435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.