IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1501-d408828.html
   My bibliography  Save this article

Priority Multi-Server Queueing System with Heterogeneous Customers

Author

Listed:
  • Valentina Klimenok

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 220030 Minsk, Belarus)

  • Alexander Dudin

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 220030 Minsk, Belarus)

  • Vladimir Vishnevsky

    (Sciences and Closed Corporation Information and Networking Technologies, Institute of Control Sciences of Russian Academy, 119991 Moscow, Russia)

Abstract

In this paper, we analyze a multi-server queueing system with heterogeneous customers that arrive according to a marked Markovian arrival process. Customers of two types differ in priorities and parameters of phase type distribution of their service time. The queue under consideration can be used to model the processes of information transmission in telecommunication networks in which often the flow of information is the superposition of several types of flows with correlation of inter-arrival times within each flow and cross-correlation. We define the process of information transmission as the multi-dimensional Markov chain, derive the generator of this chain and compute its stationary distribution. Expressions for computation of various performance measures of the system, including the probabilities of loss of customers of different types, are presented. Output flow from the system is characterized. The presented numerical results confirm the high importance of account of correlation in the arrival process. The values of important performance measures for the systems with the correlated arrival process are essentially different from the corresponding values for the systems with the stationary Poisson arrival process. Measurements in many real world systems show poor approximation of real flows by such an arrival process. However, this process is still popular among the telecommunication engineers due to the evident existing gap between the needs of adequately modeling the real life systems and the current state of the theory of algorithmic methods of queueing theory.

Suggested Citation

  • Valentina Klimenok & Alexander Dudin & Vladimir Vishnevsky, 2020. "Priority Multi-Server Queueing System with Heterogeneous Customers," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1501-:d:408828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1501/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1501/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi‐Ming He & Jingui Xie & Xiaobo Zhao, 2012. "Priority queue with customer upgrades," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 362-375, August.
    2. Bong Dae Choi & Gang Uk Hwang, 1997. "The MAP, M / G 1 , G 2 / 1 queue with preemptive priority," International Journal of Stochastic Analysis, Hindawi, vol. 10, pages 1-15, January.
    3. Di Lin & Jonathan Patrick & Fabrice Labeau, 2014. "Estimating the waiting time of multi-priority emergency patients with downstream blocking," Health Care Management Science, Springer, vol. 17(1), pages 88-99, March.
    4. Bin Sun & Moon Ho Lee & Sergey A. Dudin & Alexander N. Dudin, 2014. "Analysis of Multiserver Queueing System with Opportunistic Occupation and Reservation of Servers," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, May.
    5. de Lange, Robert & Samoilovich, Ilya & van der Rhee, Bo, 2013. "Virtual queuing at airport security lanes," European Journal of Operational Research, Elsevier, vol. 225(1), pages 153-165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Vishnevsky & Valentina Klimenok & Alexander Sokolov & Andrey Larionov, 2021. "Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods," Mathematics, MDPI, vol. 9(24), pages 1-27, December.
    2. A. N. Dudin & S. A. Dudin & O. S. Dudina, 2023. "Randomized Threshold Strategy for Providing Flexible Priority in Multi-Server Queueing System with a Marked Markov Arrival Process and Phase-Type Distribution of Service Time," Mathematics, MDPI, vol. 11(12), pages 1-23, June.
    3. Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kraig Delana & Nicos Savva & Tolga Tezcan, 2021. "Proactive Customer Service: Operational Benefits and Economic Frictions," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 70-87, 1-2.
    2. Valentina Klimenok & Alexander Dudin & Olga Dudina & Irina Kochetkova, 2020. "Queuing System with Two Types of Customers and Dynamic Change of a Priority," Mathematics, MDPI, vol. 8(5), pages 1-25, May.
    3. Mohammadi Bidhandi, Hadi & Patrick, Jonathan & Noghani, Pedram & Varshoei, Peyman, 2019. "Capacity planning for a network of community health services," European Journal of Operational Research, Elsevier, vol. 275(1), pages 266-279.
    4. Debjit Roy & Eirini Spiliotopoulou & Jelle de Vries, 2022. "Restaurant analytics: Emerging practice and research opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3687-3709, October.
    5. Li, Yongli & Gao, Xin & Xu, Zhiwei & Zhou, Xuanrui, 2018. "Network-based queuing model for simulating passenger throughput at an airport security checkpoint," Journal of Air Transport Management, Elsevier, vol. 66(C), pages 13-24.
    6. Alexander Dudin & Olga Dudina & Sergei Dudin & Konstantin Samouylov, 2021. "Analysis of Single-Server Multi-Class Queue with Unreliable Service, Batch Correlated Arrivals, Customers Impatience, and Dynamical Change of Priorities," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    7. Alexander Dudin & Sergey Dudin & Rosanna Manzo & Luigi Rarità, 2022. "Analysis of Multi-Server Priority Queueing System with Hysteresis Strategy of Server Reservation and Retrials," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    8. Roei Engel & Refael Hassin, 2017. "Customer equilibrium in a single-server system with virtual and system queues," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 161-180, October.
    9. Amir Elalouf & Guy Wachtel, 2022. "Queueing Problems in Emergency Departments: A Review of Practical Approaches and Research Methodologies," SN Operations Research Forum, Springer, vol. 3(1), pages 1-46, March.
    10. Csiszár, Csaba & Nagy, Enikő, 2017. "Model of an integrated air passenger information system and its adaptation to Budapest Airport," Journal of Air Transport Management, Elsevier, vol. 64(PA), pages 33-41.
    11. Jiang, Yangzi & Abouee-Mehrizi, Hossein & Diao, Yuhe, 2020. "Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets," European Journal of Operational Research, Elsevier, vol. 281(3), pages 597-611.
    12. Seokjun Lee & Sergei Dudin & Olga Dudina & Chesoong Kim & Valentina Klimenok, 2020. "A Priority Queue with Many Customer Types, Correlated Arrivals and Changing Priorities," Mathematics, MDPI, vol. 8(8), pages 1-20, August.
    13. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    14. Wu, Xiaodan & Li, Juan & Chu, Chao-Hsien, 2019. "Modeling multi-stage healthcare systems with service interactions under blocking for bed allocation," European Journal of Operational Research, Elsevier, vol. 278(3), pages 927-941.
    15. Vladimir Vishnevsky & Valentina Klimenok & Alexander Sokolov & Andrey Larionov, 2021. "Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods," Mathematics, MDPI, vol. 9(24), pages 1-27, December.
    16. Skorupski, Jacek & Uchroński, Piotr, 2018. "Evaluation of the effectiveness of an airport passenger and baggage security screening system," Journal of Air Transport Management, Elsevier, vol. 66(C), pages 53-64.
    17. Mani Suleiman & Haydar Demirhan & Leanne Boyd & Federico Girosi & Vural Aksakalli, 2022. "Bayesian prediction of emergency department wait time," Health Care Management Science, Springer, vol. 25(2), pages 275-290, June.
    18. Kierzkowski, Artur & Kisiel, Tomasz, 2020. "Simulation model of security control lane operation in the state of the COVID-19 epidemic," Journal of Air Transport Management, Elsevier, vol. 88(C).
    19. Ryan, Gerard & Hernández-Maskivker, Gilda-María & Valverde, Mireia & Pàmies-Pallisé, Maria-del-Mar, 2018. "Challenging conventional wisdom: Positive waiting," Tourism Management, Elsevier, vol. 64(C), pages 64-72.
    20. Mahmoud, Hussam & Kirsch, Thomas & O'Neil, Dan & Anderson, Shelby, 2023. "The resilience of health care systems following major disruptive events: Current practice and a path forward," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1501-:d:408828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.