IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p906-d366674.html
   My bibliography  Save this article

Dynamic Pricing and Optimal Control for a Stochastic Inventory System with Non-Instantaneous Deteriorating Items and Partial Backlogging

Author

Listed:
  • Xuxiang Luo

    (School of Mathematics and Statistics, Central South University, Changsha 410083, China)

  • Zaiming Liu

    (School of Mathematics and Statistics, Central South University, Changsha 410083, China)

  • Jinbiao Wu

    (School of Mathematics and Statistics, Central South University, Changsha 410083, China)

Abstract

In this paper, we consider a problem of the dynamic pricing and inventory control for non-instantaneous deteriorating items with uncertain demand, in which the demand is price-sensitive and governed by a diffusion process. Shortages and remains are permitted, and the backlogging rate is variable and dependent on the waiting time for the next replenishment. In order to maximize the expected total profit, the problem of dynamic pricing and inventory control is described as a stochastic optimal control problem. Based on the dynamic programming principle, the stochastic control model is transformed into a Hamilton-Jacobi-Bellman (HJB) equation. Then, an exact expression for the optimal dynamic pricing strategy is obtained via solving the HJB equation. Moreover, the optimal initial inventory level, the optimal selling pricing, the optimal replenishment cycle and the optimal expected total profit are achieved when the replenishment cycle starts at time 0. Finally, some numerical simulations are presented to demonstrate the analytical results, and the sensitivities analysis on system parameters are carried out to provide some suggestions for managers.

Suggested Citation

  • Xuxiang Luo & Zaiming Liu & Jinbiao Wu, 2020. "Dynamic Pricing and Optimal Control for a Stochastic Inventory System with Non-Instantaneous Deteriorating Items and Partial Backlogging," Mathematics, MDPI, vol. 8(6), pages 1-22, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:906-:d:366674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Kun-Shan & Ouyang, Liang-Yuh & Yang, Chih-Te, 2006. "An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging," International Journal of Production Economics, Elsevier, vol. 101(2), pages 369-384, June.
    2. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    3. Maher A. N. Agi & Hardik N. Soni, 2020. "Joint pricing and inventory decisions for perishable products with age-, stock-, and price-dependent demand rate," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(1), pages 85-99, January.
    4. Zhang, Jianxiong & Wang, Yu & Lu, Lihao & Tang, Wansheng, 2015. "Optimal dynamic pricing and replenishment cycle for non-instantaneous deterioration items with inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 136-145.
    5. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    6. Maihami, Reza & Nakhai Kamalabadi, Isa, 2012. "Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand," International Journal of Production Economics, Elsevier, vol. 136(1), pages 116-122.
    7. Papachristos, S. & Skouri, K., 2003. "An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging," International Journal of Production Economics, Elsevier, vol. 83(3), pages 247-256, March.
    8. T. M. Whitin, 1955. "Inventory Control and Price Theory," Management Science, INFORMS, vol. 2(1), pages 61-68, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruishu Shi & Cuilian You, 2023. "Dynamic pricing and production control for perishable products under uncertain environment," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 359-386, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dye, Chung-Yuan, 2013. "The effect of preservation technology investment on a non-instantaneous deteriorating inventory model," Omega, Elsevier, vol. 41(5), pages 872-880.
    2. Li, Guiping & He, Xiuli & Zhou, Jing & Wu, Hao, 2019. "Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items," Omega, Elsevier, vol. 84(C), pages 114-126.
    3. Reza Maihami & Behrooz Karimi & Seyyed Mohammad Taghi Fatemi Ghomi, 2017. "Effect of two-echelon trade credit on pricing-inventory policy of non-instantaneous deteriorating products with probabilistic demand and deterioration functions," Annals of Operations Research, Springer, vol. 257(1), pages 237-273, October.
    4. Zhang, Jianxiong & Wang, Yu & Lu, Lihao & Tang, Wansheng, 2015. "Optimal dynamic pricing and replenishment cycle for non-instantaneous deterioration items with inventory-level-dependent demand," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 136-145.
    5. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    6. Chandra K. Jaggi & Sunil Tiwari & Satish K. Goel, 2017. "Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities," Annals of Operations Research, Springer, vol. 248(1), pages 253-280, January.
    7. M. Palanivel & R. Uthayakumar, 2016. "Two-warehouse inventory model for non-instantaneous deteriorating items with partial backlogging and inflation over a finite time horizon," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 278-302, June.
    8. Avinadav, Tal & Herbon, Avi & Spiegel, Uriel, 2014. "Optimal ordering and pricing policy for demand functions that are separable into price and inventory age," International Journal of Production Economics, Elsevier, vol. 155(C), pages 406-417.
    9. Terzi, Mourad & Ouazene, Yassine & Yalaoui, Alice & Yalaoui, Farouk, 2023. "Lot-sizing and pricing decisions under attraction demand models and multi-channel environment: New efficient formulations," Operations Research Perspectives, Elsevier, vol. 10(C).
    10. Beullens, Patrick & Ghiami, Yousef, 2022. "Waste reduction in the supply chain of a deteriorating food item – Impact of supply structure on retailer performance," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1017-1034.
    11. Shah, Nita H & Soni, Hardik N & Patel, Kamlesh A, 2013. "Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates," Omega, Elsevier, vol. 41(2), pages 421-430.
    12. M. Palanivel & R. Uthayakumar, 2015. "Finite horizon EOQ model for non-instantaneous deteriorating items with price and advertisement dependent demand and partial backlogging under inflation," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(10), pages 1762-1773, July.
    13. Tal Avinadav & Tatyana Chernonog & Yael Lahav & Uriel Spiegel, 2017. "Dynamic pricing and promotion expenditures in an EOQ model of perishable products," Annals of Operations Research, Springer, vol. 248(1), pages 75-91, January.
    14. Avinadav, Tal, 2020. "The effect of decision rights allocation on a supply chain of perishable products under a revenue-sharing contract," International Journal of Production Economics, Elsevier, vol. 225(C).
    15. R. Sundara rajan & R. Uthayakumar, 2017. "Comprehensive solution procedure for optimizing replenishment policies of instantaneous deteriorating items with stock-dependent demand under partial trade credit linked to order quantity," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1343-1373, November.
    16. Madhukar Nagare & Pankaj Dutta & Pravin Suryawanshi, 2020. "Optimal procurement and discount pricing for single-period non-instantaneous deteriorating products with promotional efforts," Operational Research, Springer, vol. 20(1), pages 89-117, March.
    17. Maryam Ghoreishi, 2019. "Testing the robustness of deterministic models of optimal dynamic pricing and lot-sizing for deteriorating items under stochastic conditions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1131-1152, December.
    18. Avinadav, Tal & Herbon, Avi & Spiegel, Uriel, 2013. "Optimal inventory policy for a perishable item with demand function sensitive to price and time," International Journal of Production Economics, Elsevier, vol. 144(2), pages 497-506.
    19. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    20. Chih-Te Yang & Liang-Yuh Ouyang & Kun-Shan Wu & Hsiu-Feng Yen, 2011. "An optimal replenishment policy for deteriorating items with stock-dependent demand and relaxed terminal conditions under limited storage space," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(1), pages 139-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:906-:d:366674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.