IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p862-d363046.html
   My bibliography  Save this article

The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm

Author

Listed:
  • José García

    (Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
    These authors contributed equally to this work.)

  • José V. Martí

    (Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 València, Spain
    These authors contributed equally to this work.)

  • Víctor Yepes

    (Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 València, Spain
    These authors contributed equally to this work.)

Abstract

The design of reinforced earth retaining walls is a combinatorial optimization problem of interest due to practical applications regarding the cost savings involved in the design and the optimization in the amount of CO 2 emissions generated in its construction. On the other hand, this problem presents important challenges in computational complexity since it involves 32 design variables; therefore we have in the order of 10 20 possible combinations. In this article, we propose a hybrid algorithm in which the particle swarm optimization method is integrated that solves optimization problems in continuous spaces with the db-scan clustering technique, with the aim of addressing the combinatorial problem of the design of reinforced earth retaining walls. This algorithm optimizes two objective functions: the carbon emissions embedded and the economic cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization process, a random operator was designed. The best solutions, the averages, and the interquartile ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a hybrid version that uses k-means as the discretization method and with a discrete implementation of the harmony search algorithm. The results indicate that the db-scan operator significantly improves the quality of the solutions and that the proposed metaheuristic shows competitive results with respect to the harmony search algorithm.

Suggested Citation

  • José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:862-:d:363046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Víctor Yepes & José V. Martí & José García, 2020. "Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    2. Jana Ries & Patrick Beullens, 2015. "A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(5), pages 782-793, May.
    3. Martin, Simon & Ouelhadj, Djamila & Beullens, Patrick & Ozcan, Ender & Juan, Angel A. & Burke, Edmund K., 2016. "A multi-agent based cooperative approach to scheduling and routing," European Journal of Operational Research, Elsevier, vol. 254(1), pages 169-178.
    4. Broderick Crawford & Ricardo Soto & Gino Astorga & José García & Carlos Castro & Fernando Paredes, 2017. "Putting Continuous Metaheuristics to Work in Binary Search Spaces," Complexity, Hindawi, vol. 2017, pages 1-19, May.
    5. José García & Francisco Altimiras & Alvaro Peña & Gino Astorga & Oscar Peredo, 2018. "A Binary Cuckoo Search Big Data Algorithm Applied to Large-Scale Crew Scheduling Problems," Complexity, Hindawi, vol. 2018, pages 1-15, July.
    6. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    7. El-Ghazali Talbi, 2016. "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, Springer, vol. 240(1), pages 171-215, May.
    8. Ming-Wei Li & Jing Geng & Wei-Chiang Hong & Yang Zhang, 2018. "Hybridizing Chaotic and Quantum Mechanisms and Fruit Fly Optimization Algorithm with Least Squares Support Vector Regression Model in Electric Load Forecasting," Energies, MDPI, vol. 11(9), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José García & Paola Moraga & Broderick Crawford & Ricardo Soto & Hernan Pinto, 2022. "Binarization Technique Comparisons of Swarm Intelligence Algorithm: An Application to the Multi-Demand Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    2. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    2. José García & Paola Moraga & Matias Valenzuela & Hernan Pinto, 2020. "A db-Scan Hybrid Algorithm: An Application to the Multidimensional Knapsack Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    3. José García & Gino Astorga & Víctor Yepes, 2021. "An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics," Mathematics, MDPI, vol. 9(3), pages 1-20, January.
    4. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    5. José García & José Lemus-Romani & Francisco Altimiras & Broderick Crawford & Ricardo Soto & Marcelo Becerra-Rozas & Paola Moraga & Alex Paz Becerra & Alvaro Peña Fritz & Jose-Miguel Rubio & Gino Astor, 2021. "A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    6. José Lemus-Romani & Marcelo Becerra-Rozas & Broderick Crawford & Ricardo Soto & Felipe Cisternas-Caneo & Emanuel Vega & Mauricio Castillo & Diego Tapia & Gino Astorga & Wenceslao Palma & Carlos Castro, 2021. "A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems," Mathematics, MDPI, vol. 9(22), pages 1-41, November.
    7. Mauricio Castillo & Ricardo Soto & Broderick Crawford & Carlos Castro & Rodrigo Olivares, 2021. "A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    8. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    9. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    10. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    11. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    12. Xiyong Zhao & Yanzhou Li & Yongli Chen & Xi Qiao, 2022. "A Method of Cyanobacterial Concentrations Prediction Using Multispectral Images," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    13. Romauch, Martin & Hartl, Richard F., 2017. "Capacity planning for cluster tools in the semiconductor industry," International Journal of Production Economics, Elsevier, vol. 194(C), pages 167-180.
    14. Kailai Ni & Jianzhou Wang & Guangyu Tang & Danxiang Wei, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network for Electricity Load Forecasting: A Case Study in Australia," Energies, MDPI, vol. 12(13), pages 1-30, June.
    15. Lam, Chiou-Peng & Masek, Martin & Kelly, Luke & Papasimeon, Michael & Benke, Lyndon, 2019. "A simheuristic approach for evolving agent behaviour in the exploration for novel combat tactics," Operations Research Perspectives, Elsevier, vol. 6(C).
    16. Nasr Al-Hinai & Chefi Triki, 2020. "A two-level evolutionary algorithm for solving the petrol station replenishment problem with periodicity constraints and service choice," Annals of Operations Research, Springer, vol. 286(1), pages 325-350, March.
    17. Li, Feng & Du, Timon C. & Wei, Ying, 2020. "Enhancing supply chain decisions with consumers’ behavioral factors: An illustration of decoy effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    18. Michael J. Ryoba & Shaojian Qu & Yongyi Zhou, 2021. "Feature subset selection for predicting the success of crowdfunding project campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 671-684, September.
    19. Franco Peschiera & Robert Dell & Johannes Royset & Alain Haït & Nicolas Dupin & Olga Battaïa, 2021. "A novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 635-664, September.
    20. Poorya Ghafoorpoor Yazdi & Aydin Azizi & Majid Hashemipour, 2019. "A Hybrid Methodology for Validation of Optimization Solutions Effects on Manufacturing Sustainability with Time Study and Simulation Approach for SMEs," Sustainability, MDPI, vol. 11(5), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:862-:d:363046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.