IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i2p16-d128173.html
   My bibliography  Save this article

Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial

Author

Listed:
  • Roberto Garrappa

    (Dipartimento di Matematica, Università Degli Studi di Bari, Via E. Orabona 4, 70126 Bari, Italy)

Abstract

Solving differential equations of fractional (i.e., non-integer) order in an accurate, reliable and efficient way is much more difficult than in the standard integer-order case; moreover, the majority of the computational tools do not provide built-in functions for this kind of problem. In this paper, we review two of the most effective families of numerical methods for fractional-order problems, and we discuss some of the major computational issues such as the efficient treatment of the persistent memory term and the solution of the nonlinear systems involved in implicit methods. We present therefore a set of MATLAB routines specifically devised for solving three families of fractional-order problems: fractional differential equations (FDEs) (also for the non-scalar case), multi-order systems (MOSs) of FDEs and multi-term FDEs (also for the non-scalar case); some examples are provided to illustrate the use of the routines.

Suggested Citation

  • Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:2:p:16-:d:128173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/2/16/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/2/16/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garrappa, Roberto, 2015. "Trapezoidal methods for fractional differential equations: Theoretical and computational aspects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 110(C), pages 96-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    2. Cao, Dewei & Chen, Hu, 2023. "Error analysis of a finite difference method for the distributed order sub-diffusion equation using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 109-117.
    3. Kai Diethelm, 2022. "A New Diffusive Representation for Fractional Derivatives, Part II: Convergence Analysis of the Numerical Scheme," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    4. J. Alberto Conejero & Jonathan Franceschi & Enric Picó-Marco, 2022. "Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative Provide?," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    5. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    7. Vsevolod Bohaienko & Fasma Diele & Carmela Marangi & Cristiano Tamborrino & Sebastian Aleksandrowicz & Edyta Woźniak, 2023. "A Novel Fractional-Order RothC Model," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    8. Özköse, Fatma & Yavuz, Mehmet & Şenel, M. Tamer & Habbireeh, Rafla, 2022. "Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    10. Roman Ivanovich Parovik, 2022. "Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
    11. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    12. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    13. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Hansin Bilgili & Chwen Sheu, 2022. "A Bibliometric Review of the Mathematics Journal," Mathematics, MDPI, vol. 10(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arenas, Abraham J. & González-Parra, Gilberto & Chen-Charpentier, Benito M., 2016. "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 121(C), pages 48-63.
    2. Das, Saptarshi & Pan, Indranil & Das, Shantanu, 2016. "Effect of random parameter switching on commensurate fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 157-173.
    3. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    4. Wang, Yuan-Ming & Xie, Bo, 2023. "A fourth-order fractional Adams-type implicit–explicit method for nonlinear fractional ordinary differential equations with weakly singular solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 21-48.
    5. Rainey Lyons & Aghalaya S. Vatsala & Ross A. Chiquet, 2017. "Picard’s Iterative Method for Caputo Fractional Differential Equations with Numerical Results," Mathematics, MDPI, vol. 5(4), pages 1-9, November.
    6. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    7. Jannelli, Alessandra, 2024. "A finite difference method on quasi-uniform grids for the fractional boundary-layer Blasius flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 382-398.
    8. Hamdan, Nur ’Izzati & Kilicman, Adem, 2018. "A fractional order SIR epidemic model for dengue transmission," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 55-62.
    9. Čermák, Jan & Nechvátal, Luděk, 2019. "Stability and chaos in the fractional Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 24-33.
    10. Bonab, Zahra Farzaneh & Javidi, Mohammad, 2020. "Higher order methods for fractional differential equation based on fractional backward differentiation formula of order three," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 71-89.
    11. Kai Diethelm & Roberto Garrappa & Martin Stynes, 2020. "Good (and Not So Good) Practices in Computational Methods for Fractional Calculus," Mathematics, MDPI, vol. 8(3), pages 1-21, March.
    12. Sowa, Marcin, 2018. "Application of SubIval in solving initial value problems with fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 86-103.
    13. Cardone, Angelamaria & Conte, Dajana, 2020. "Stability analysis of spline collocation methods for fractional differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 501-514.
    14. Marina Popolizio, 2018. "Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions," Mathematics, MDPI, vol. 6(1), pages 1-13, January.
    15. Moustafa, Mahmoud & Mohd, Mohd Hafiz & Ismail, Ahmad Izani & Abdullah, Farah Aini, 2018. "Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:2:p:16-:d:128173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.