IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010973.html
   My bibliography  Save this article

Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems

Author

Listed:
  • Fiaz, Muhammad
  • Aqeel, Muhammad
  • Marwan, Muhammad
  • Sabir, Muhammad

Abstract

In this article we studied a 3D autonomous system derived from Sprot B, C, Van der Schrier-Mass and Munmuangsaen Srisuchinwong chaotic systems for existence of zero Hopf bifurcation with the help of averaging theory of first order. Fractional order analysis of the derived system are discussed for stability of equilibrium points, chaotification condition, sensitivity dependence, Lyapunov exponents, Kaplan-Yorke dimension, chaotic time history and phase portraits. Novelty of the paper is investigation of integer and fractional order synchronization of derived system with famous Lorenz model by active control method under the same parametric values and initial conditions. By taking example of the model under consideration we generalized the synchronization for a class of integer and fractional order systems. We concluded that if a couple of integer order chaotic dynamical system is synchronized then its fractional order version will also be synchronized for same parametric values and initial conditions and vice versa. We also compared three different numerical techniques for synchronization. By calculating CPU timing for synchronization we determined that the integer order chaotic system was synchronized earlier than that of fractional order. The results so achieved show that it is sufficient to get synchronization of an integer order system if its fractional version also exists. This investigation contributes to minimize the cost of control for a class of dynamical systems when such control is made through synchronization. Numerical simulations are also provided to authenticate the analytical results.

Suggested Citation

  • Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010973
    DOI: 10.1016/j.chaos.2021.111743
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010973
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    2. Li, Chunguang & Chen, Guanrong, 2004. "Chaos and hyperchaos in the fractional-order Rössler equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 55-61.
    3. Agrawal, S.K. & Srivastava, M. & Das, S., 2012. "Synchronization of fractional order chaotic systems using active control method," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 737-752.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, Manoj Kumar & Sharma, B.B., 2017. "Backstepping based stabilization and synchronization of a class of fractional order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 274-284.
    2. Khanzadeh, Alireza & Pourgholi, Mahdi, 2016. "Robust Synchronization of Fractional-Order Chaotic Systems at a Pre-Specified Time Using Sliding Mode Controller with Time-Varying Switching Surfaces," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 69-77.
    3. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    4. Hajipour, Ahamad & Hajipour, Mojtaba & Baleanu, Dumitru, 2018. "On the adaptive sliding mode controller for a hyperchaotic fractional-order financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 139-153.
    5. Zambrano-Serrano, Ernesto & Bekiros, Stelios & Platas-Garza, Miguel A. & Posadas-Castillo, Cornelio & Agarwal, Praveen & Jahanshahi, Hadi & Aly, Ayman A., 2021. "On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    7. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    8. Soliman, Nancy S. & Tolba, Mohammed F. & Said, Lobna A. & Madian, Ahmed H. & Radwan, Ahmed G., 2019. "Fractional X-shape controllable multi-scroll attractor with parameter effect and FPGA automatic design tool software," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 292-307.
    9. Wafaa S. Sayed & Moheb M. R. Henein & Salwa K. Abd-El-Hafiz & Ahmed G. Radwan, 2017. "Generalized Dynamic Switched Synchronization between Combinations of Fractional-Order Chaotic Systems," Complexity, Hindawi, vol. 2017, pages 1-17, February.
    10. Cruz-Victoria, Juan C. & Martínez-Guerra, Rafael & Pérez-Pinacho, Claudia A. & Gómez-Cortés, Gian Carlo, 2015. "Synchronization of nonlinear fractional order systems by means of PIrα reduced order observer," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 224-231.
    11. Lu, Jun Guo & Chen, Guanrong, 2006. "A note on the fractional-order Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 27(3), pages 685-688.
    12. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    13. Zheng, Yongai & Ji, Zhilin, 2016. "Predictive control of fractional-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 307-313.
    14. Laarem, Guessas, 2021. "A new 4-D hyper chaotic system generated from the 3-D Rösslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it’s fractional order model and chaos sy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Gao, Xin & Yu, Juebang, 2005. "Synchronization of two coupled fractional-order chaotic oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 26(1), pages 141-145.
    16. Sheu, Long-Jye & Chen, Hsien-Keng & Chen, Juhn-Horng & Tam, Lap-Mou & Chen, Wen-Chin & Lin, Kuang-Tai & Kang, Yuan, 2008. "Chaos in the Newton–Leipnik system with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 36(1), pages 98-103.
    17. Peng, Guojun & Jiang, Yaolin & Chen, Fang, 2008. "Generalized projective synchronization of fractional order chaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3738-3746.
    18. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    19. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    20. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.