IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1677-d1112878.html
   My bibliography  Save this article

A Novel Fractional-Order RothC Model

Author

Listed:
  • Vsevolod Bohaienko

    (Istituto per Applicazioni del Calcolo ‘M.Picone’, National Research Council (CNR), Via Amendola 122/D, 70126 Bari, Italy)

  • Fasma Diele

    (Istituto per Applicazioni del Calcolo ‘M.Picone’, National Research Council (CNR), Via Amendola 122/D, 70126 Bari, Italy)

  • Carmela Marangi

    (Istituto per Applicazioni del Calcolo ‘M.Picone’, National Research Council (CNR), Via Amendola 122/D, 70126 Bari, Italy)

  • Cristiano Tamborrino

    (Istituto di Nanotecnologie ‘NANOTEC’, National Research Council (CNR), Via Monteroni 122/D, 73100 Lecce, Italy)

  • Sebastian Aleksandrowicz

    (Centrum Badan Kosmicznych PAN, Bartycka 18a, 00-716 Warszawa, Poland)

  • Edyta Woźniak

    (Centrum Badan Kosmicznych PAN, Bartycka 18a, 00-716 Warszawa, Poland)

Abstract

A new fractional q -order variation of the RothC model for the dynamics of soil organic carbon is introduced. A computational method based on the discretization of the analytic solution along with the finite-difference technique are suggested and the stability results for the latter are given. The accuracy of the scheme, in terms of the temporal step size h , is confirmed through numerical testing of a constructed analytic solution. The effectiveness of the proposed discrete method is compared with that of the classical discrete RothC model. Results from real-world experiments show that, by adjusting the fractional order q and the multiplier term ζ ( t , q ) , a better match between simulated and actual data can be achieved compared to the traditional integer-order model.

Suggested Citation

  • Vsevolod Bohaienko & Fasma Diele & Carmela Marangi & Cristiano Tamborrino & Sebastian Aleksandrowicz & Edyta Woźniak, 2023. "A Novel Fractional-Order RothC Model," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1677-:d:1112878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    2. Singh, Anup & Das, Subir & Ong, S.H., 2022. "Study and analysis of nonlinear (2+1)-dimensional solute transport equation in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 491-500.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    2. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    3. Hansin Bilgili & Chwen Sheu, 2022. "A Bibliometric Review of the Mathematics Journal," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    4. Biswas, Chetna & Singh, Anup & Chopra, Manish & Das, Subir, 2023. "Study of fractional-order reaction-advection-diffusion equation using neural network method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 15-27.
    5. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Kai Diethelm, 2022. "A New Diffusive Representation for Fractional Derivatives, Part II: Convergence Analysis of the Numerical Scheme," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    7. Özköse, Fatma & Yavuz, Mehmet & Şenel, M. Tamer & Habbireeh, Rafla, 2022. "Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    9. Cao, Dewei & Chen, Hu, 2023. "Error analysis of a finite difference method for the distributed order sub-diffusion equation using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 109-117.
    10. J. Alberto Conejero & Jonathan Franceschi & Enric Picó-Marco, 2022. "Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative Provide?," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    11. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    12. Roman Ivanovich Parovik, 2022. "Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
    13. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    14. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1677-:d:1112878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.