IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0276654.html
   My bibliography  Save this article

Fractional transit compartment model for describing drug delayed response to tumors using Mittag-Leffler distribution on age-structured PKPD model

Author

Listed:
  • Jong Hyuk Byun
  • Yunil Roh
  • In-Soo Yoon
  • Kwang Su Kim
  • Il Hyo Jung

Abstract

The response of a cell population is often delayed relative to drug injection, and individual cells in a population of cells have a specific age distribution. The application of transit compartment models (TCMs) is a common approach for describing this delay. In this paper, we propose a TCM in which damaged cells caused by a drug are given by a single fractional derivative equation. This model describes the delay as a single equation composed of fractional and ordinary derivatives, instead of a system of ODEs expressed in multiple compartments, applicable to the use of the PK concentration in the model. This model tunes the number of compartments in the existing model and expresses the delay in detail by estimating an appropriate fractional order. We perform model robustness, sensitivity analysis, and change of parameters based on the amount of data. Additionally, we resolve the difficulty in parameter estimation and model simulation using a semigroup property, consisting of a system with a mixture of fractional and ordinary derivatives. This model provides an alternative way to express the delays by estimating an appropriate fractional order without determining the pre-specified number of compartments.

Suggested Citation

  • Jong Hyuk Byun & Yunil Roh & In-Soo Yoon & Kwang Su Kim & Il Hyo Jung, 2022. "Fractional transit compartment model for describing drug delayed response to tumors using Mittag-Leffler distribution on age-structured PKPD model," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-17, November.
  • Handle: RePEc:plo:pone00:0276654
    DOI: 10.1371/journal.pone.0276654
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276654
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0276654&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0276654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberto Garrappa, 2018. "Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial," Mathematics, MDPI, vol. 6(2), pages 1-23, January.
    2. Francisco J. Ariza-Hernandez & Martin P. Arciga-Alejandre & Jorge Sanchez-Ortiz & Alberto Fleitas-Imbert, 2020. "Bayesian Derivative Order Estimation for a Fractional Logistic Model," Mathematics, MDPI, vol. 8(1), pages 1-9, January.
    3. David S. Glass & Xiaofan Jin & Ingmar H. Riedel-Kruse, 2021. "Nonlinear delay differential equations and their application to modeling biological network motifs," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Shuning & Ji, Jinchen & Wen, Guilin & Yin, Shan, 2024. "Global dynamics of a hexagonal governor system with two time delays in the parameter and state spaces," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Faïçal Ndaïrou & Delfim F. M. Torres, 2023. "Pontryagin Maximum Principle for Incommensurate Fractional-Orders Optimal Control Problems," Mathematics, MDPI, vol. 11(19), pages 1-12, October.
    3. Dmytro Sytnyk & Barbara Wohlmuth, 2023. "Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type," Mathematics, MDPI, vol. 11(10), pages 1-35, May.
    4. Hansin Bilgili & Chwen Sheu, 2022. "A Bibliometric Review of the Mathematics Journal," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    5. Fiaz, Muhammad & Aqeel, Muhammad & Marwan, Muhammad & Sabir, Muhammad, 2022. "Integer and fractional order analysis of a 3D system and generalization of synchronization for a class of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Bo-Wei Qin & Lei Zhao & Wei Lin, 2021. "A frequency-amplitude coordinator and its optimal energy consumption for biological oscillators," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Kai Diethelm, 2022. "A New Diffusive Representation for Fractional Derivatives, Part II: Convergence Analysis of the Numerical Scheme," Mathematics, MDPI, vol. 10(8), pages 1-12, April.
    8. Özköse, Fatma & Yavuz, Mehmet & Şenel, M. Tamer & Habbireeh, Rafla, 2022. "Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    9. Mangal, Shiv & Misra, O.P. & Dhar, Joydip, 2023. "Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 82-102.
    10. Cao, Dewei & Chen, Hu, 2023. "Error analysis of a finite difference method for the distributed order sub-diffusion equation using discrete comparison principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 109-117.
    11. J. Alberto Conejero & Jonathan Franceschi & Enric Picó-Marco, 2022. "Fractional vs. Ordinary Control Systems: What Does the Fractional Derivative Provide?," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
    12. Li, Hang & Shen, Yongjun & Han, Yanjun & Dong, Jinlu & Li, Jian, 2023. "Determining Lyapunov exponents of fractional-order systems: A general method based on memory principle," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Roman Ivanovich Parovik, 2022. "Studies of the Fractional Selkov Dynamical System for Describing the Self-Oscillatory Regime of Microseisms," Mathematics, MDPI, vol. 10(22), pages 1-14, November.
    14. Daniele Mortari & Roberto Garrappa & Luigi Nicolò, 2023. "Theory of Functional Connections Extended to Fractional Operators," Mathematics, MDPI, vol. 11(7), pages 1-18, April.
    15. Brugnano, Luigi & Gurioli, Gianmarco & Iavernaro, Felice, 2025. "A shooting-Newton procedure for solving fractional terminal value problems," Applied Mathematics and Computation, Elsevier, vol. 489(C).
    16. Vsevolod Bohaienko & Fasma Diele & Carmela Marangi & Cristiano Tamborrino & Sebastian Aleksandrowicz & Edyta Woźniak, 2023. "A Novel Fractional-Order RothC Model," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    17. Lucía Inglada-Pérez & Pablo Coto-Millán, 2021. "A Chaos Analysis of the Dry Bulk Shipping Market," Mathematics, MDPI, vol. 9(17), pages 1-35, August.
    18. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0276654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.