IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1203-d1629092.html
   My bibliography  Save this article

Differential Quadrature Method for Bending Analysis of Asymmetric Circular Organic Solar Cells Resting on Kerr Foundation in Hygrothermal Environment

Author

Listed:
  • Mohammad A. Abazid

    (Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Muneer Alali

    (Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Mohammed Sobhy

    (Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

Abstract

This article presents the first theoretical analysis of the bending behavior of circular organic solar cells (COSCs). The solar cell under investigation is built on a flexible Kerr foundation and has five layers of Al, P3HT:PCBM, PEDOT:PSS, ITO, and Glass. The cell is exposed to hygrothermal conditions. The related Kerr foundation lessens displacements and supports the cell. The principle of virtual work is used to generate the basic partial differential equations, which are then solved using the differential quadrature method (DQM). The results of the present theory are validated by comparing them with published ones. The effects of the temperature, humidity, elastic foundation factors, and geometric configuration characteristics on the deflection and stresses of the COSC are examined.

Suggested Citation

  • Mohammad A. Abazid & Muneer Alali & Mohammed Sobhy, 2025. "Differential Quadrature Method for Bending Analysis of Asymmetric Circular Organic Solar Cells Resting on Kerr Foundation in Hygrothermal Environment," Mathematics, MDPI, vol. 13(7), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1203-:d:1629092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelfattah Mustafa & Reda S. Salama & Mokhtar Mohamed, 2023. "Semi-Analytical Analysis of Drug Diffusion through a Thin Membrane Using the Differential Quadrature Method," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    2. Kumavat, Priyanka P. & Sonar, Prashant & Dalal, Dipak S., 2017. "An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1262-1287.
    3. Mahmure Avey & Francesco Tornabene & Nigar Mahar Aslanova & Abdullah H. Sofiyev, 2024. "The Application of the Modified Lindstedt–Poincaré Method to Solve the Nonlinear Vibration Problem of Exponentially Graded Laminated Plates on Elastic Foundations," Mathematics, MDPI, vol. 12(5), pages 1-22, March.
    4. Fatemah H. H. Al Mukahal & Fatemah Alsebai & Mohammed Sobhy, 2025. "Applying Levy and DQ Methods to Hygrothermal Deformation of Piezoelectric/GPLs Plates with Porosities Lying on Elastic Foundations Using a Quasi-3D Plate Theory," Mathematics, MDPI, vol. 13(5), pages 1-34, February.
    5. Guney, Mukrimin Sevket, 2016. "Solar power and application methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 776-785.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
    2. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    3. Peharz, Gerhard & Ulm, Andreas, 2018. "Quantifying the influence of colors on the performance of c-Si photovoltaic devices," Renewable Energy, Elsevier, vol. 129(PA), pages 299-308.
    4. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    5. Zou, Lingeng & Liu, Ye & Yu, Jianlin, 2023. "Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle," Renewable Energy, Elsevier, vol. 217(C).
    6. Ma, Di & Chen, Qi & Yan, Gang, 2024. "Thermodynamic and economic analysis of a solar-assisted ejector-enhanced flash tank vapor injection heat pump cycle with dual evaporators," Renewable Energy, Elsevier, vol. 235(C).
    7. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    8. Han, Zhonghe & Liu, Kaixin & Li, Guiqiang & Zhao, Xudong & Shittu, Samson, 2021. "Electrical and thermal performance comparison between PVT-ST and PV-ST systems," Energy, Elsevier, vol. 237(C).
    9. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.
    11. Calderón, Alejandro & Palacios, Anabel & Barreneche, Camila & Segarra, Mercè & Prieto, Cristina & Rodriguez-Sanchez, Alfonso & Fernández, A. Inés, 2018. "High temperature systems using solid particles as TES and HTF material: A review," Applied Energy, Elsevier, vol. 213(C), pages 100-111.
    12. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    13. Kamel, Michael S.A. & Oelgemöller, Michael & Jacob, Mohan V., 2024. "Chemical vapor deposition-grown graphene transparent conducting electrode for organic photovoltaics: Advances towards scalable transfer-free synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    14. Gary Ampuño & Juan Lata-Garcia & Francisco Jurado, 2020. "Evaluation of Energy Efficiency and the Reduction of Atmospheric Emissions by Generating Electricity from a Solar Thermal Power Generation Plant," Energies, MDPI, vol. 13(3), pages 1-20, February.
    15. Zhang, Yuang & Wang, Jiasheng & Qiu, Jinjing & Jin, Xin & Umair, Malik Muhammad & Lu, Rongwen & Zhang, Shufen & Tang, Bingtao, 2019. "Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity," Applied Energy, Elsevier, vol. 237(C), pages 83-90.
    16. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    17. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    18. Kosmopoulos, Panagiotis & Dhake, Harshal & Melita, Nefeli & Tagarakis, Konstantinos & Georgakis, Aggelos & Stefas, Avgoustinos & Vaggelis, Orestis & Korre, Valentina & Kashyap, Yashwant, 2024. "Multi-Layer Cloud Motion Vector Forecasting for Solar Energy Applications," Applied Energy, Elsevier, vol. 353(PB).
    19. Tang, X.Y. & Yang, W.W. & Yang, Y. & Jiao, Y.H. & Zhang, T., 2021. "A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution," Energy, Elsevier, vol. 229(C).
    20. Magrassi, Fabio & Rocco, Elena & Barberis, Stefano & Gallo, Michela & Del Borghi, Adriana, 2019. "Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach," Renewable Energy, Elsevier, vol. 130(C), pages 290-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1203-:d:1629092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.