IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015088.html
   My bibliography  Save this article

Multi-Layer Cloud Motion Vector Forecasting for Solar Energy Applications

Author

Listed:
  • Kosmopoulos, Panagiotis
  • Dhake, Harshal
  • Melita, Nefeli
  • Tagarakis, Konstantinos
  • Georgakis, Aggelos
  • Stefas, Avgoustinos
  • Vaggelis, Orestis
  • Korre, Valentina
  • Kashyap, Yashwant

Abstract

Real-time forecasting of solar radiation posses several benefits and has huge potential for industrial applications. However, the intermittent nature of solar radiation makes it difficult to forecast accurately. Cloud cover is one of the major influencing factors of solar radiation. Thus, forecasting cloud motion effectively can help to improve the accuracy of short-term solar radiation forecasts. In this study, a novel Multi-Layer Cloud Motion Vector (referred as 3D-CMV) forecasting technique was introduced, which combined with the fast radiative transfer model (FRTM) produces forecasts up to 3 h ahead at 15 min intervals over 5km × 5km grids across Europe and North Africa. The cloud microphysics obtained from the Support to Nowcasting and Very Short Range Forecasting (SAFNWC) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) was used as input to the forecasting system. The results obtained improvements in forecasts as compared to the conventional cloud motion vector techniques, across all seasons and sky conditions. Comparisons against ground-based measurements from the Baseline Surface Radiation Network (BSRN) revealed an overall maximum percentage difference of less than 12%, bias under -20 Wm−2 and a root mean square error (RMSE) under 80 Wm−2. Performance evaluations of Multi-Layer Cloud Motion Vector has been performed against several state-of-the-art techniques and presented in this study. Short-term solar energy forecasting has an established market and rising demand. Accurate forecasts from Multi-Layer CMV hence pose a high potential for real world applications.

Suggested Citation

  • Kosmopoulos, Panagiotis & Dhake, Harshal & Melita, Nefeli & Tagarakis, Konstantinos & Georgakis, Aggelos & Stefas, Avgoustinos & Vaggelis, Orestis & Korre, Valentina & Kashyap, Yashwant, 2024. "Multi-Layer Cloud Motion Vector Forecasting for Solar Energy Applications," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015088
    DOI: 10.1016/j.apenergy.2023.122144
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.