IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p859-d1605724.html
   My bibliography  Save this article

Combining Generalized Linear Autoregressive Moving Average and Bootstrap Models for Analyzing Time Series of Respiratory Diseases and Air Pollutants

Author

Listed:
  • Ana Julia Alves Camara

    (Department of Statistics, Federal University of Espirito Santo, Av. Fernando Ferrari, 514, Vitoria 29075-910, Brazil)

  • Valdério Anselmo Reisen

    (PPGEA (Graduate Program in Environmental Engineering), Federal University of Espirito Santo, Av. Fernando Ferrari, 514, Vitoria 29075-910, Brazil)

  • Glaura Conceicao Franco

    (Department of Statistics, Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil)

  • Pascal Bondon

    (Laboratoire des Signaux et Systèmes, CentraleSupélec, CNRS, Université Paris-Saclay, 3 Rue Joliot Curie, 91192 Gif-sur-Yvette, France)

Abstract

The generalized linear autoregressive moving-average model (GLARMA) has been used in epidemiology to evaluate the impact of pollutants on health. These effects are quantified through the relative risk (RR) measure, which inference can be based on the asymptotic properties of the maximum likelihood estimator. However, for small series, this can be troublesome. This work studies different types of bootstrap confidence intervals (CIs) for the RR. The simulation study revealed that the model parameter related to the data’s autocorrelation could influence the intervals’ coverage. Problems could arise when covariates present an autocorrelation structure. To solve this, using the vector autoregressive (VAR) filter in the covariates is suggested.

Suggested Citation

  • Ana Julia Alves Camara & Valdério Anselmo Reisen & Glaura Conceicao Franco & Pascal Bondon, 2025. "Combining Generalized Linear Autoregressive Moving Average and Bootstrap Models for Analyzing Time Series of Respiratory Diseases and Air Pollutants," Mathematics, MDPI, vol. 13(5), pages 1-23, March.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:859-:d:1605724
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hee-Young Kim & Yousung Park, 2008. "A non-stationary integer-valued autoregressive model," Statistical Papers, Springer, vol. 49(3), pages 485-502, July.
    2. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    3. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    4. Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
    5. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    6. Härdle, Wolfgang & Huet, Sylvie & Mammen, Enno & Sperlich, Stefan, 2004. "Bootstrap Inference In Semiparametric Generalized Additive Models," Econometric Theory, Cambridge University Press, vol. 20(2), pages 265-300, April.
    7. Laurence A. Baxter & Stephen J. Finch & Frederick W. Lipfert & Qiqing Yu, 1997. "Comparing Estimates of the Effects of Air Pollution on Human Mortality Obtained Using Different Regression Methodologies," Risk Analysis, John Wiley & Sons, vol. 17(3), pages 273-278, June.
    8. Jens‐Peter Kreiss & Jürgen Franke, 1992. "Bootstrapping Stationary Autoregressive Moving‐Average Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(4), pages 297-317, July.
    9. Heinen, Andreas, 2003. "Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model," MPRA Paper 8113, University Library of Munich, Germany.
    10. Juliana B. de Souza & Valdério A. Reisen & Glaura C. Franco & Márton Ispány & Pascal Bondon & Jane Meri Santos, 2018. "Generalized additive models with principal component analysis: an application to time series of respiratory disease and air pollution data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 453-480, February.
    11. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    12. HEINEN, Andreas & RENGIFO, Erick, 2003. "Multivariate modelling of time series count data: an autoregressive conditional Poisson model," LIDAM Discussion Papers CORE 2003025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Richard A. Davis & Konstantinos Fokianos & Scott H. Holan & Harry Joe & James Livsey & Robert Lund & Vladas Pipiras & Nalini Ravishanker, 2021. "Count Time Series: A Methodological Review," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1533-1547, May.
    14. Dunsmuir, William T. M. & Scott, David J., 2015. "The glarma Package for Observation-Driven Time Series Regression of Counts," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    3. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    4. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    5. Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
    6. Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
    7. repec:hum:wpaper:sfb649dp2011-044 is not listed on IDEAS
    8. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
    9. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    10. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    11. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    12. Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
    13. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    14. Christian Weiß & Hee-Young Kim, 2013. "Parameter estimation for binomial AR(1) models with applications in finance and industry," Statistical Papers, Springer, vol. 54(3), pages 563-590, August.
    15. Juan Dolado, 2012. "Comments on: Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 442-446, September.
    16. Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
    17. Mirko Armillotta & Konstantinos Fokianos, 2024. "Count network autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 584-612, July.
    18. Carallo, Giulia & Casarin, Roberto & Robert, Christian P., 2024. "Generalized Poisson difference autoregressive processes," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1359-1390.
    19. Wagner Barreto-Souza, 2019. "Mixed Poisson INAR(1) processes," Statistical Papers, Springer, vol. 60(6), pages 2119-2139, December.
    20. Jian Pei & Yang Lu, 2025. "Forecasting natural disaster frequencies using nonstationary count time series models," Statistical Papers, Springer, vol. 66(3), pages 1-44, April.
    21. Christian H. Weiß & Esmeralda Gonçalves & Nazaré Mendes Lopes, 2017. "Testing the compounding structure of the CP-INARCH model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 571-603, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:859-:d:1605724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.