IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p353-d1573871.html
   My bibliography  Save this article

Gaussian Process Regression with Soft Equality Constraints

Author

Listed:
  • Didem Kochan

    (Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA)

  • Xiu Yang

    (Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015, USA)

Abstract

This study introduces a novel Gaussian process (GP) regression framework that probabilistically enforces physical constraints, with a particular focus on equality conditions. The GP model is trained using the quantum-inspired Hamiltonian Monte Carlo (QHMC) algorithm, which efficiently samples from a wide range of distributions by allowing a particle’s mass matrix to vary according to a probability distribution. By integrating QHMC into the GP regression with probabilistic handling of the constraints, this approach balances the computational cost and accuracy in the resulting GP model, as the probabilistic nature of the method contributes to shorter execution times compared with existing GP-based approaches. Additionally, we introduce an adaptive learning algorithm to optimize the selection of constraint locations to further enhance the flexibility of the method. We demonstrate the effectiveness and robustness of our algorithm on synthetic examples, including 2-dimensional and 10-dimensional GP models under noisy conditions, as well as a practical application involving the reconstruction of a sparsely observed steady-state heat transport problem. The proposed approach reduces the posterior variance in the resulting model, achieving stable and accurate sampling results across all test cases while maintaining computational efficiency.

Suggested Citation

  • Didem Kochan & Xiu Yang, 2025. "Gaussian Process Regression with Soft Equality Constraints," Mathematics, MDPI, vol. 13(3), pages 1-17, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:353-:d:1573871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang Ho Kang & Sun Young Kim, 2025. "Energy-Adaptive SGHSMC: A Particle-Efficient Nonlinear Filter for High-Maneuver Target Tracking," Mathematics, MDPI, vol. 13(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    2. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    3. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    4. Tamara Cantú Maltauro & Miguel Angel Uribe-Opazo & Luciana Pagliosa Carvalho Guedes & Manuel Galea & Orietta Nicolis, 2025. "Spatial–Temporal Variability of Soybean Yield Using Separable Covariance Structure," Agriculture, MDPI, vol. 15(11), pages 1-21, May.
    5. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    6. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    7. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    8. Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    9. Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    10. Matthew J. Heaton & Stephan R. Sain & Andrew J. Monaghan & Olga V. Wilhelmi & Mary H. Hayden, 2015. "An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 123-135, March.
    11. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    12. Anderes, Ethan B. & Stein, Michael L., 2011. "Local likelihood estimation for nonstationary random fields," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 506-520, March.
    13. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    14. De Oliveira, Victor & Kone, Bazoumana, 2015. "Prediction intervals for integrals of Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 37-51.
    15. Jorge Castillo-Mateo & Miguel Lafuente & Jesús Asín & Ana C. Cebrián & Alan E. Gelfand & Jesús Abaurrea, 2022. "Spatial Modeling of Day-Within-Year Temperature Time Series: An Examination of Daily Maximum Temperatures in Aragón, Spain," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 487-505, September.
    16. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    17. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    18. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    19. Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.
    20. Lecomte, J.B. & Benoît, H.P. & Etienne, M.P. & Bel, L. & Parent, E., 2013. "Modeling the habitat associations and spatial distribution of benthic macroinvertebrates: A hierarchical Bayesian model for zero-inflated biomass data," Ecological Modelling, Elsevier, vol. 265(C), pages 74-84.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:353-:d:1573871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.