IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i11p1199-d1669311.html
   My bibliography  Save this article

Spatial–Temporal Variability of Soybean Yield Using Separable Covariance Structure

Author

Listed:
  • Tamara Cantú Maltauro

    (Postgraduate Program in Agricultural Engineering (PGEAGRI), Technological and Exact Sciences Center, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil)

  • Miguel Angel Uribe-Opazo

    (Postgraduate Program in Agricultural Engineering (PGEAGRI), Technological and Exact Sciences Center, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil)

  • Luciana Pagliosa Carvalho Guedes

    (Postgraduate Program in Agricultural Engineering (PGEAGRI), Technological and Exact Sciences Center, Western Paraná State University (UNIOESTE), Cascavel 85819-110, Brazil)

  • Manuel Galea

    (Department of Statistics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile)

  • Orietta Nicolis

    (Engineering Faculty, Andres Bello University, Valparaíso 2520000, Chile
    Department of Economics, University of Messina, Piazza Pugliatti 1, 98100 Messina, Italy)

Abstract

(1) Understanding and characterizing the spatial and temporal variability of agricultural data is a key aspect of precision agriculture, particularly in soil management. Modeling the spatiotemporal dependency structure through geostatistical methods is essential for accurately estimating the parameters that define this structure and for performing Kriging-based interpolation. This study aimed to analyze the spatiotemporal variability of the soybean yield over ten crop years (2012–2013 to 2021–2022) in an agricultural area located in Cascavel, Paraná, Brazil. (2) Spatial analyses were conducted using two approaches: the Gaussian linear spatial model with independent multiple repetitions and the spatiotemporal model with a separable covariance structure. (3) The results showed that the maps generated using the Gaussian linear spatial model with multiple independent repetitions exhibited similar patterns to the individual soybean yield maps for each crop year. However, when comparing the kriged soybean yield maps based on independent multiple repetitions with those derived from the spatiotemporal model with a separable covariance structure, the accuracy indices indicated that the maps were dissimilar. (4) This suggests that incorporating the spatiotemporal structure provides additional information, making it a more comprehensive approach for analyzing soybean yield variability. The best model was chosen through cross-validation and a trace. Thus, incorporating a spatiotemporal model with a separable covariance structure increases the accuracy and interpretability of soybean yield analyses, making it a more effective tool for decision-making in precision agriculture.

Suggested Citation

  • Tamara Cantú Maltauro & Miguel Angel Uribe-Opazo & Luciana Pagliosa Carvalho Guedes & Manuel Galea & Orietta Nicolis, 2025. "Spatial–Temporal Variability of Soybean Yield Using Separable Covariance Structure," Agriculture, MDPI, vol. 15(11), pages 1-21, May.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1199-:d:1669311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/11/1199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/11/1199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhiqing Zhuo & An Xing & Yong Li & Yuanfang Huang & Chaojia Nie, 2019. "Spatio-Temporal Variability and the Factors Influencing Soil-Available Heavy Metal Micronutrients in Different Agricultural Sub-Catchments," Sustainability, MDPI, vol. 11(21), pages 1-14, October.
    2. Michael Chipeta & Dianne Terlouw & Kamija Phiri & Peter Diggle, 2017. "Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure," Environmetrics, John Wiley & Sons, Ltd., vol. 28(1), February.
    3. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    2. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    3. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    4. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    5. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    6. Dyogo Lesniewski Ribeiro & Tamara Cantú Maltauro & Luciana Pagliosa Carvalho Guedes & Miguel Angel Uribe-Opazo & Gustavo Henrique Dalposso, 2024. "Directional Differences in Thematic Maps of Soil Chemical Attributes with Geometric Anisotropy," Stats, MDPI, vol. 7(1), pages 1-14, January.
    7. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    8. Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    9. Jaewoo Park & Sangwan Lee, 2022. "A projection‐based Laplace approximation for spatial latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    10. Matthew J. Heaton & Stephan R. Sain & Andrew J. Monaghan & Olga V. Wilhelmi & Mary H. Hayden, 2015. "An Analysis of an Incomplete Marked Point Pattern of Heat-Related 911 Calls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 123-135, March.
    11. Bachoc, François & Lagnoux, Agnès & Nguyen, Thi Mong Ngoc, 2017. "Cross-validation estimation of covariance parameters under fixed-domain asymptotics," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 42-67.
    12. Anderes, Ethan B. & Stein, Michael L., 2011. "Local likelihood estimation for nonstationary random fields," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 506-520, March.
    13. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    14. Zixuan Wang & Xufeng Fei & Meiling Sheng & Rui Xiao, 2023. "Exploring the Spatial–Temporal Variation in Cultivated Land Quality and Influential Factors in the Lower Reaches of the Yangtze River from 2017 to 2020," Land, MDPI, vol. 12(2), pages 1-14, January.
    15. De Oliveira, Victor & Kone, Bazoumana, 2015. "Prediction intervals for integrals of Gaussian random fields," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 37-51.
    16. Jorge Castillo-Mateo & Miguel Lafuente & Jesús Asín & Ana C. Cebrián & Alan E. Gelfand & Jesús Abaurrea, 2022. "Spatial Modeling of Day-Within-Year Temperature Time Series: An Examination of Daily Maximum Temperatures in Aragón, Spain," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 487-505, September.
    17. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    18. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    19. Varin, Cristiano & Host, Gudmund & Skare, Oivind, 2005. "Pairwise likelihood inference in spatial generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1173-1191, June.
    20. Jonas Wallin & David Bolin, 2015. "Geostatistical Modelling Using Non-Gaussian Matérn Fields," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 872-890, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:11:p:1199-:d:1669311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.