IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v28y2017i1ne2425.html
   My bibliography  Save this article

Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure

Author

Listed:
  • Michael Chipeta
  • Dianne Terlouw
  • Kamija Phiri
  • Peter Diggle

Abstract

The problem of choosing spatial sampling designs for investigating an unobserved spatial phenomenon S arises in many contexts, for example, in identifying households to select for a prevalence survey to study disease burden and heterogeneity in a study region D. We studied randomized inhibitory spatial sampling designs to address the problem of spatial prediction while taking account of the need to estimate covariance structure. Two specific classes of design are inhibitory designs and inhibitory designs plus close pairs. In an inhibitory design, any pair of sample locations must be separated by at least an inhibition distance δ. In an inhibitory plus close pairs design, n − k sample locations in an inhibitory design with inhibition distance δ are augmented by k locations each positioned close to one of the randomly selected n − k locations in the inhibitory design, uniformly distributed within a disk of radius ζ. We present simulation results for the Matérn class of covariance structures. When the nugget variance is non‐negligible, inhibitory plus close pairs designs demonstrate improved predictive efficiency over designs without close pairs. We illustrate how these findings can be applied to the design of a rolling Malaria Indicator Survey that forms part of an ongoing large‐scale, 5‐year malaria transmission reduction project in Malawi.

Suggested Citation

  • Michael Chipeta & Dianne Terlouw & Kamija Phiri & Peter Diggle, 2017. "Inhibitory geostatistical designs for spatial prediction taking account of uncertain covariance structure," Environmetrics, John Wiley & Sons, Ltd., vol. 28(1), February.
  • Handle: RePEc:wly:envmet:v:28:y:2017:i:1:n:e2425
    DOI: 10.1002/env.2425
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2425
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sze Him Leung & Ji Meng Loh & Chun Yip Yau & Zhengyuan Zhu, 2021. "Spatial Sampling Design Using Generalized Neyman–Scott Process," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 105-127, March.
    2. Dyogo Lesniewski Ribeiro & Tamara Cantú Maltauro & Luciana Pagliosa Carvalho Guedes & Miguel Angel Uribe-Opazo & Gustavo Henrique Dalposso, 2024. "Directional Differences in Thematic Maps of Soil Chemical Attributes with Geometric Anisotropy," Stats, MDPI, vol. 7(1), pages 1-14, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:28:y:2017:i:1:n:e2425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.