IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2645-d1726447.html
   My bibliography  Save this article

Quantum Machine Learning: Towards Hybrid Quantum-Classical Vision Models

Author

Listed:
  • Syed Muhammad Abuzar Rizvi

    (Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea)

  • Usama Inam Paracha

    (Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea)

  • Uman Khalid

    (Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea)

  • Kyesan Lee

    (Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea)

  • Hyundong Shin

    (Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin 17104, Republic of Korea)

Abstract

The emergence of deep vision models such as convolutional neural networks and vision transformers has revolutionized computer vision, enabling significant advancements in image classification, object detection, and segmentation. In parallel, the rapid development of quantum computing has spurred interest in quantum machine learning (QML), which integrates the strengths of quantum computation with the representational power of deep learning. In QML, parameterized quantum circuits offer the potential to capture complex image features, define complex decision boundaries, and provide other computational advantages. This paper investigates hybrid quantum-classical vision architectures, with a focus on hybrid quantum-classical convolutional neural networks and hybrid quantum-classical vision transformers. These hybrid models explore both quantum pre-processing and post-processing of data, respectively, where quantum circuits are strategically integrated into the data pipeline to enhance model performance. Our results suggest that these hybrid models can enhance accuracy and computational efficiency in vision-related tasks, even with the constraints of current noisy intermediate-scale quantum devices.

Suggested Citation

  • Syed Muhammad Abuzar Rizvi & Usama Inam Paracha & Uman Khalid & Kyesan Lee & Hyundong Shin, 2025. "Quantum Machine Learning: Towards Hybrid Quantum-Classical Vision Models," Mathematics, MDPI, vol. 13(16), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2645-:d:1726447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    2. Vojtěch Havlíček & Antonio D. Córcoles & Kristan Temme & Aram W. Harrow & Abhinav Kandala & Jerry M. Chow & Jay M. Gambetta, 2019. "Supervised learning with quantum-enhanced feature spaces," Nature, Nature, vol. 567(7747), pages 209-212, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    2. Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
    3. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    4. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Daniel J. Egger & Claudio Gambella & Jakub Marecek & Scott McFaddin & Martin Mevissen & Rudy Raymond & Andrea Simonetto & Stefan Woerner & Elena Yndurain, 2020. "Quantum Computing for Finance: State of the Art and Future Prospects," Papers 2006.14510, arXiv.org, revised Jan 2021.
    6. Huang, Chenyi & Zhang, Shibin & Chang, Yan & Yan, Lily, 2024. "Quantum metric learning with fuzzy-informed learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    7. Deepak Ranga & Aryan Rana & Sunil Prajapat & Pankaj Kumar & Kranti Kumar & Athanasios V. Vasilakos, 2024. "Quantum Machine Learning: Exploring the Role of Data Encoding Techniques, Challenges, and Future Directions," Mathematics, MDPI, vol. 12(21), pages 1-32, October.
    8. Wu, Jiang & Ou, Guiyan & Liu, Xiaohui & Dong, Ke, 2022. "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence," Journal of Informetrics, Elsevier, vol. 16(2).
    9. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
    11. Jurgita Bruneckiene & Robertas Jucevicius & Ineta Zykiene & Jonas Rapsikevicius & Mantas Lukauskas, 2019. "Assessment of Investment Attractiveness in European Countries by Artificial Neural Networks: What Competences are Needed to Make a Decision on Collective Well-Being?," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
    12. Nikolaos Schetakis & Davit Aghamalyan & Michael Boguslavsky & Agnieszka Rees & Marc Rakotomalala & Paul Robert Griffin, 2024. "Quantum Machine Learning for Credit Scoring," Mathematics, MDPI, vol. 12(9), pages 1-12, May.
    13. Eric Vaz, 2024. "Quantum machine learning in spatial analysis: a paradigm shift in resource allocation and environmental modeling," Letters in Spatial and Resource Sciences, Springer, vol. 17(1), pages 1-13, December.
    14. Li, Nianqiao & Yan, Fei & Hirota, Kaoru, 2022. "Quantum data visualization: A quantum computing framework for enhancing visual analysis of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    15. Xu, Zhengmeng & Wang, Yujie & Feng, Xiaotong & Wang, Yilin & Li, Yanli & Lin, Hai, 2024. "Quantum-enhanced forecasting: Leveraging quantum gramian angular field and CNNs for stock return predictions," Finance Research Letters, Elsevier, vol. 67(PA).
    16. Cambyse Rouzé & Daniel Stilck França & Emilio Onorati & James D. Watson, 2024. "Efficient learning of ground and thermal states within phases of matter," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Guo, Mingchao & Liu, Hailing & Li, Yongmei & Li, Wenmin & Gao, Fei & Qin, Sujuan & Wen, Qiaoyan, 2022. "Quantum algorithms for anomaly detection using amplitude estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    19. Bikram Khanal & Pablo Rivas, 2024. "A Modified Depolarization Approach for Efficient Quantum Machine Learning," Mathematics, MDPI, vol. 12(9), pages 1-17, May.
    20. Gong, Li-Hua & Xiang, Ling-Zhi & Liu, Si-Hang & Zhou, Nan-Run, 2022. "Born machine model based on matrix product state quantum circuit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2645-:d:1726447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.