IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v67y2024ipas1544612324008705.html
   My bibliography  Save this article

Quantum-enhanced forecasting: Leveraging quantum gramian angular field and CNNs for stock return predictions

Author

Listed:
  • Xu, Zhengmeng
  • Wang, Yujie
  • Feng, Xiaotong
  • Wang, Yilin
  • Li, Yanli
  • Lin, Hai

Abstract

This paper presents the Quantum Gramian Angular Field (QGAF) method, which integrates quantum computing with deep learning to enhance forecasting in time series analysis. This method effectively converts stock return time series data into a format compatible with Convolutional Neural Network (CNN) training. Our empirical tests, conducted on stock market data from China, Hong Kong, and the United States, demonstrate that QGAF significantly outperforms the traditional GAF approach in accuracy. These findings underscore the potential of combining quantum computing and deep learning in financial time series forecasting.

Suggested Citation

  • Xu, Zhengmeng & Wang, Yujie & Feng, Xiaotong & Wang, Yilin & Li, Yanli & Lin, Hai, 2024. "Quantum-enhanced forecasting: Leveraging quantum gramian angular field and CNNs for stock return predictions," Finance Research Letters, Elsevier, vol. 67(PA).
  • Handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324008705
    DOI: 10.1016/j.frl.2024.105840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324008705
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Su & Xuanye Cai & You Wu, 2023. "Exchange rates forecasting and trend analysis after the COVID-19 outbreak: new evidence from interpretable machine learning," Applied Economics Letters, Taylor & Francis Journals, vol. 30(15), pages 2052-2059, September.
    2. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    3. Haibin Xie & Yuying Sun & Pengying Fan, 2023. "Return direction forecasting: a conditional autoregressive shape model with beta density," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-16, December.
    4. Luo, Qin & Ma, Feng & Wang, Jiqian & Wu, You, 2024. "Changing determinant driver and oil volatility forecasting: A comprehensive analysis," Energy Economics, Elsevier, vol. 129(C).
    5. Charles H. Bennett & David P. DiVincenzo, 2000. "Quantum information and computation," Nature, Nature, vol. 404(6775), pages 247-255, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Dingjun & Yan, Kai, 2024. "Time series forecasting of stock market indices based on DLWR-LSTM model," Finance Research Letters, Elsevier, vol. 68(C).
    2. Zhengmeng Xu & Yujie Wang & Xiaotong Feng & Yilin Wang & Yanli Li & Hai Lin, 2023. "Quantum-Enhanced Forecasting: Leveraging Quantum Gramian Angular Field and CNNs for Stock Return Predictions," Papers 2310.07427, arXiv.org, revised Dec 2023.
    3. Wu, Jiang & Ou, Guiyan & Liu, Xiaohui & Dong, Ke, 2022. "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence," Journal of Informetrics, Elsevier, vol. 16(2).
    4. Eric Vaz, 2024. "Quantum machine learning in spatial analysis: a paradigm shift in resource allocation and environmental modeling," Letters in Spatial and Resource Sciences, Springer, vol. 17(1), pages 1-13, December.
    5. Li, Nianqiao & Yan, Fei & Hirota, Kaoru, 2022. "Quantum data visualization: A quantum computing framework for enhancing visual analysis of data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    6. Vicente Moret-Bonillo & Samuel Magaz-Romero & Eduardo Mosqueira-Rey, 2022. "Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model," Mathematics, MDPI, vol. 10(2), pages 1-21, January.
    7. Gong, Li-Hua & Xiang, Ling-Zhi & Liu, Si-Hang & Zhou, Nan-Run, 2022. "Born machine model based on matrix product state quantum circuit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Laura Böhm & Sebastian Kolb & Thomas Plankenbühler & Jonas Miederer & Simon Markthaler & Jürgen Karl, 2023. "Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 16(18), pages 1-25, September.
    9. Gurdip Bakshi & Xiaohui Gao & Zhaowei Zhang, 2024. "What Insights Do Short-Maturity (7DTE) Return Predictive Regressions Offer about Risk Preferences in the Oil Market?," Commodities, MDPI, vol. 3(2), pages 1-23, May.
    10. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Jonas Jäger & Roman V. Krems, 2023. "Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Zhang, Feipeng & Gao, Hongfu & Yuan, Di, 2024. "The asymmetric effect of G7 stock market volatility on predicting oil price volatility: Evidence from quantile autoregression model," Journal of Commodity Markets, Elsevier, vol. 35(C).
    13. Olawale Ayoade & Pablo Rivas & Javier Orduz, 2022. "Artificial Intelligence Computing at the Quantum Level," Data, MDPI, vol. 7(3), pages 1-16, February.
    14. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    15. Johannes Herrmann & Sergi Masot Llima & Ants Remm & Petr Zapletal & Nathan A. McMahon & Colin Scarato & François Swiadek & Christian Kraglund Andersen & Christoph Hellings & Sebastian Krinner & Nathan, 2022. "Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Matthias C. Caro & Hsin-Yuan Huang & Nicholas Ezzell & Joe Gibbs & Andrew T. Sornborger & Lukasz Cincio & Patrick J. Coles & Zoë Holmes, 2023. "Out-of-distribution generalization for learning quantum dynamics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
    18. Moffo, Ahmadou Mustapha Fonton, 2024. "A machine learning approach in stress testing US bank holding companies," International Review of Financial Analysis, Elsevier, vol. 95(PC).
    19. Jing, Hang & Li, Yan & Brandsema, Matthew J. & Chen, Yousu & Yue, Meng, 2024. "HHL algorithm with mapping function and enhanced sampling for model predictive control in microgrids," Applied Energy, Elsevier, vol. 361(C).
    20. Liu, Hai-Ling & Yu, Chao-Hua & Wan, Lin-Chun & Qin, Su-Juan & Gao, Fei & Wen, Qiaoyan, 2022. "Quantum mean centering for block-encoding-based quantum algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:67:y:2024:i:pa:s1544612324008705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.