IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2461-d1713553.html
   My bibliography  Save this article

Nonparametric Transformation Models for Double-Censored Data with Crossed Survival Curves: A Bayesian Approach

Author

Listed:
  • Ping Xu

    (School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
    These authors contributed equally to this work.)

  • Ruichen Ni

    (School of Astronautics, Harbin Institute of Technology, Harbin 150006, China
    These authors contributed equally to this work.)

  • Shouzheng Chen

    (Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China)

  • Zhihua Ma

    (College of Economics, Shenzhen University, Shenzhen 518060, China)

  • Chong Zhong

    (Department of Data Science and AI, The Hong Kong Polytechnic University, Hong Kong 999077, China)

Abstract

Double-censored data are frequently encountered in pharmacological and epidemiological studies, where the failure time can only be observed within a certain range and is otherwise either left- or right-censored. In this paper, we present a Bayesian approach for analyzing double-censored survival data with crossed survival curves. We introduce a novel pseudo-quantile I-splines prior to model monotone transformations under both random and fixed censoring schemes. Additionally, we incorporate categorical heteroscedasticity using the dependent Dirichlet process (DDP), enabling the estimation of crossed survival curves. Comprehensive simulations further validate the robustness and accuracy of the method, particularly under the fixed censoring scheme, where traditional approaches may NOT be applicable. In the randomized AIDS clinical trial, by incorporating the categorical heteroscedasticity, we obtain a new finding that the effect of baseline log RNA levels is significant. The proposed framework provides a flexible and reliable tool for survival analysis, offering an alternative to parametric and semiparametric models.

Suggested Citation

  • Ping Xu & Ruichen Ni & Shouzheng Chen & Zhihua Ma & Chong Zhong, 2025. "Nonparametric Transformation Models for Double-Censored Data with Crossed Survival Curves: A Bayesian Approach," Mathematics, MDPI, vol. 13(15), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2461-:d:1713553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    2. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    3. Fei Gao & Donglin Zeng & Dan‐Yu Lin, 2017. "Semiparametric estimation of the accelerated failure time model with partly interval‐censored data," Biometrics, The International Biometric Society, vol. 73(4), pages 1161-1168, December.
    4. Songnian Chen, 2002. "Rank Estimation of Transformation Models," Econometrica, Econometric Society, vol. 70(4), pages 1683-1697, July.
    5. Zeng, Donglin & Lin, D.Y., 2007. "Efficient Estimation for the Accelerated Failure Time Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1387-1396, December.
    6. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    7. T. Cai, 2004. "Semiparametric regression analysis for doubly censored data," Biometrika, Biometrika Trust, vol. 91(2), pages 277-290, June.
    8. Torsten Hothorn & Lisa Möst & Peter Bühlmann, 2018. "Most Likely Transformations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(1), pages 110-134, March.
    9. Haiming Zhou & Timothy Hanson, 2018. "A Unified Framework for Fitting Bayesian Semiparametric Models to Arbitrarily Censored Survival Data, Including Spatially Referenced Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 571-581, April.
    10. Shuwei Li & Tao Hu & Peijie Wang & Jianguo Sun, 2018. "A Class of Semiparametric Transformation Models for Doubly Censored Failure Time Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 682-698, September.
    11. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    12. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    2. Lin, Huazhen & Peng, Heng, 2013. "Smoothed rank correlation of the linear transformation regression model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 615-630.
    3. Yao Luo & Isabelle Perrigne & Quang Vuong, 2018. "Structural Analysis of Nonlinear Pricing," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2523-2568.
    4. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    5. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    6. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    7. Choi, Taehwa & Kim, Arlene K.H. & Choi, Sangbum, 2021. "Semiparametric least-squares regression with doubly-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    8. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    9. Huazhen Lin & Ling Zhou & Xiaohua Zhou, 2014. "Semiparametric Regression Analysis of Longitudinal Skewed Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1031-1050, December.
    10. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    11. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    12. Esmeralda A. Ramalho & Joaquim J. S. Ramalho, 2017. "Moment-based estimation of nonlinear regression models with boundary outcomes and endogeneity, with applications to nonnegative and fractional responses," Econometric Reviews, Taylor & Francis Journals, vol. 36(4), pages 397-420, April.
    13. Yu, Tao & Li, Pengfei & Chen, Baojiang & Yuan, Ao & Qin, Jing, 2023. "Maximum pairwise-rank-likelihood-based inference for the semiparametric transformation model," Journal of Econometrics, Elsevier, vol. 235(2), pages 454-469.
    14. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    15. Nick Kloodt & Natalie Neumeyer & Ingrid Keilegom, 2021. "Specification testing in semi-parametric transformation models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 980-1003, December.
    16. Xu, Xingbai & Lee, Lung-fei, 2015. "A spatial autoregressive model with a nonlinear transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 186(1), pages 1-18.
    17. Shuwei Li & Jianguo Sun & Tian Tian & Xia Cui, 2020. "Semiparametric regression analysis of doubly censored failure time data from cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 315-338, April.
    18. Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.
    19. Jerry Hausman & Tiemen Woutersen, 2014. "Estimating the Derivative Function and Counterfactuals in Duration Models with Heterogeneity," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 472-496, August.
    20. Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," Journal of Econometrics, Elsevier, vol. 216(1), pages 175-191.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2461-:d:1713553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.