IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2384-d1709471.html
   My bibliography  Save this article

A Copula-Driven CNN-LSTM Framework for Estimating Heterogeneous Treatment Effects in Multivariate Outcomes

Author

Listed:
  • Jong-Min Kim

    (Statistics Discipline, Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN 56267, USA
    EGADE Business School, Tecnológico de Monterrey, Ave. Rufino Tamayo, Monterrey 66269, Mexico)

Abstract

Estimating heterogeneous treatment effects (HTEs) across multiple correlated outcomes poses significant challenges due to complex dependency structures and diverse data types. In this study, we propose a novel deep learning framework integrating empirical copula transformations with a CNN-LSTM (Convolutional Neural Networks and Long Short-Term Memory networks) architecture to capture nonlinear dependencies and temporal dynamics in multivariate treatment effect estimation. The empirical copula transformation, a rank-based nonparametric approach, preprocesses input covariates to better represent the underlying joint distributions before modeling. We compare this method with a baseline CNN-LSTM model lacking copula preprocessing and a nonparametric tree-based approach, the Causal Forest, grounded in generalized random forests for HTE estimation. Our framework accommodates continuous, count, and censored survival outcomes simultaneously through a multitask learning setup with customized loss functions, including Cox partial likelihood for survival data. We evaluate model performance under varying treatment perturbation rates via extensive simulation studies, demonstrating that the Empirical Copula CNN-LSTM achieves superior accuracy and robustness in average treatment effect (ATE) and conditional average treatment effect (CATE) estimation. These results highlight the potential of copula-based deep learning models for causal inference in complex multivariate settings, offering valuable insights for personalized treatment strategies.

Suggested Citation

  • Jong-Min Kim, 2025. "A Copula-Driven CNN-LSTM Framework for Estimating Heterogeneous Treatment Effects in Multivariate Outcomes," Mathematics, MDPI, vol. 13(15), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2384-:d:1709471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2384/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2384/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2384-:d:1709471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.