IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2116-d1689788.html
   My bibliography  Save this article

Mathematical Frameworks for Network Dynamics: A Six-Pillar Survey for Analysis, Control, and Inference

Author

Listed:
  • Dimitri Volchenkov

    (Department of Mathematics and Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA)

Abstract

The study of dynamical processes on complex networks constitutes a foundational domain bridging applied mathematics, statistical physics, systems theory, and data science. Temporal evolution, not static topology, determines the controllability, stability, and inference limits of real-world systems, from epidemics and neural circuits to power grids and social media. However, the methodological landscape remains fragmented, with distinct communities advancing separate formalisms for spreading, control, inference, and design. This review presents a unifying six-pillar framework for the analysis of network dynamics: (i) spectral and structural foundations; (ii) deterministic mean-field reductions; (iii) control and observability theory; (iv) adaptive and temporal networks; (v) probabilistic inference and belief propagation; (vi) multilayer and interdependent systems. Within each pillar, we delineate conceptual motivations, canonical models, analytical methodologies, and open challenges. Our corpus, selected via a PRISMA-guided screening of 134 mathematically substantive works (1997–2024), is organized to emphasize internal logic and cross-pillar connectivity. By mapping the field onto a coherent methodological spine, this survey aims to equip theorists and practitioners with a transferable toolkit for interpreting, designing, and controlling dynamic behavior on networks.

Suggested Citation

  • Dimitri Volchenkov, 2025. "Mathematical Frameworks for Network Dynamics: A Six-Pillar Survey for Analysis, Control, and Inference," Mathematics, MDPI, vol. 13(13), pages 1-74, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2116-:d:1689788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2116/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2116/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    2. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    3. Subramanian Manickavalli & Arumugam Parivallal & Ramasamy Kavikumar & Boomipalagan Kaviarasan, 2024. "Distributed Bipartite Consensus of Multi-Agent Systems via Disturbance Rejection Control Strategy," Mathematics, MDPI, vol. 12(20), pages 1-13, October.
    4. Gilboa-Freedman, Gail & Hassin, Refael, 2016. "When Markov chains meet: A continuous-time model of network evolution," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 131-138.
    5. Ahmed S. Alsafran & Malcolm W. Daniels, 2020. "Consensus Control for Reactive Power Sharing Using an Adaptive Virtual Impedance Approach," Energies, MDPI, vol. 13(8), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    3. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    4. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    5. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun, 2024. "A rumor propagation model in multilingual environment with time and state dependent impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Nizamani, Sarwat & Memon, Nasrullah & Galam, Serge, 2014. "From public outrage to the burst of public violence: An epidemic-like model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 620-630.
    7. Yue Xiao & Xiaojun Zhang, 2024. "Degree Distribution of Evolving Network with Node Preference Deletion," Mathematics, MDPI, vol. 12(23), pages 1-14, December.
    8. Huo, Liang’an & Song, Naixiang, 2016. "Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 73-84.
    9. Gaetano Lisi, 2024. "Is Education the Best Tool to Fight Disinformation?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 15996-16012, December.
    10. Dong, Yafang & Huo, Liang'an & Zhao, Laijun, 2022. "An improved two-layer model for rumor propagation considering time delay and event-triggered impulsive control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    11. Huo, Liang’an & Ma, Chenyang, 2017. "The interaction evolution model of mass incidents with delay in a social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 440-452.
    12. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.
    13. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    14. Wang, Tao & He, Juanjuan & Wang, Xiaoxia, 2018. "An information spreading model based on online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 488-496.
    15. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    16. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Huo, Liang’an & Cheng, Yingying & Liu, Chen & Ding, Fan, 2018. "Dynamic analysis of rumor spreading model for considering active network nodes and nonlinear spreading rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 24-35.
    18. van den Bergh, Jeroen, 2023. "Climate policy versus growth concerns: Suggestions for economic research and communication," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
    19. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "2SI2R rumor spreading model in homogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 153-161.
    20. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2116-:d:1689788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.