A Comprehensive Review of Image Restoration Research Based on Diffusion Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- van Dyk, David A. & Park, Taeyoung, 2008. "Partially Collapsed Gibbs Samplers: Theory and Methods," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 790-796, June.
- Hafiz Syed Muhammad Muslim & Sajid Ali Khan & Shariq Hussain & Arif Jamal & Hafiz Syed Ahmed Qasim, 2019. "A knowledge-based image enhancement and denoising approach," Computational and Mathematical Organization Theory, Springer, vol. 25(2), pages 108-121, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014.
"Bayesian exploratory factor analysis,"
Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
- Gabriella Conti & Sylvia Fruehwirth-Schnatter & James J. Heckman & Remi Piatek, 2014. "Bayesian Exploratory Factor Analysis," Working Papers 2014-014, Human Capital and Economic Opportunity Working Group.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James J. Heckman & Rémi Piatek, 2014. "Bayesian Exploratory Factor Analysis," NRN working papers 2014-08, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers CWP30/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Gabriella Conti & Sylvia Frühwirth-Schnatter & James Heckman & Rémi Piatek, 2014. "Bayesian exploratory factor analysis," CeMMAP working papers 30/14, Institute for Fiscal Studies.
- Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian Exploratory Factor Analysis," IZA Discussion Papers 8338, Institute of Labor Economics (IZA).
- Chenping Zhao & Wenlong Yue & Jianlou Xu & Huazhu Chen, 2023. "Joint Low-Light Image Enhancement and Denoising via a New Retinex-Based Decomposition Model," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
- Monica Billio & Roberto Casarin & Matteo Iacopini, 2024.
"Bayesian Markov-Switching Tensor Regression for Time-Varying Networks,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 109-121, January.
- Monica Billio & Roberto Casarin & Matteo Iacopini, 2018. "Bayesian Markov Switching Tensor Regression for Time-varying Networks," Working Papers 2018:14, Department of Economics, University of Venice "Ca' Foscari".
- Peter Knaus & Sylvia Fruhwirth-Schnatter, 2023. "The Dynamic Triple Gamma Prior as a Shrinkage Process Prior for Time-Varying Parameter Models," Papers 2312.10487, arXiv.org, revised Jan 2025.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016.
"Large Bayesian VARMAs,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
- Joshua C C Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Papers 1409, University of Strathclyde Business School, Department of Economics.
- Joshua C.C. Chan & Eric Eisenstat & Gary Koop, 2014. "Large Bayesian VARMAs," Working Paper series 40_14, Rimini Centre for Economic Analysis.
- Joshua Chan & Eric Eisenstat & Gary Koop, 2015. "Large Bayesian VARMAs," Working Paper series 15-36, Rimini Centre for Economic Analysis.
- Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2014. "Large Bayesian VARMAs," SIRE Discussion Papers 2015-06, Scottish Institute for Research in Economics (SIRE).
- Chenping Zhao & Wenlong Yue & Yingjun Wang & Jianping Wang & Shousheng Luo & Huazhu Chen & Yan Wang, 2024. "Low-Light Image Enhancement Integrating Retinex-Inspired Extended Decomposition with a Plug-and-Play Framework," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
- Wai-Yin Poon & Hai-Bin Wang, 2014. "Multivariate partially linear single-index models: Bayesian analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(4), pages 755-768, December.
- Zhang, Yifan & Fong, Duncan K.H. & DeSarbo, Wayne S., 2021. "A generalized ordinal finite mixture regression model for market segmentation," International Journal of Research in Marketing, Elsevier, vol. 38(4), pages 1055-1072.
- Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
- Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
- Bresson Georges & Chaturvedi Anoop & Rahman Mohammad Arshad & Shalabh, 2021.
"Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation,"
The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 75-97, May.
- Georges Bresson & Anoop Chaturvedi & Mohammad Arshad Rahman & Shalabh, 2020. "Seemingly Unrelated Regression with Measurement Error: Estimation via Markov chain Monte Carlo and Mean Field Variational Bayes Approximation," Papers 2006.07074, arXiv.org.
- Kuo, Kun-Lin & Wang, Yuchung J., 2018. "Simulating conditionally specified models," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 171-180.
- Berrett, Candace & Calder, Catherine A., 2012. "Data augmentation strategies for the Bayesian spatial probit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 478-490.
- Jinge Yu & Qiuyu Wu & Xiangyu Luo, 2023. "Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 719-733, December.
- Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
- Gianluca Mastrantonio & Giovanna Jona Lasinio & Alessio Pollice & Lorenzo Teodonio & Giulia Capotorti, 2022. "A Dirichlet process model for change‐point detection with multivariate bioclimatic data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
- Ricardo C. Pedroso & Rosangela H. Loschi & Fernando Andrés Quintana, 2023. "Multipartition model for multiple change point identification," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 759-783, June.
- Kim, Jaeho, 2015. "Bayesian Inference in a Non-linear/Non-Gaussian Switching State Space Model: Regime-dependent Leverage Effect in the U.S. Stock Market," MPRA Paper 67153, University Library of Munich, Germany.
- Lian, Heng, 2010. "Sparse Bayesian hierarchical modeling of high-dimensional clustering problems," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1728-1737, August.
- Peter Chondro & Qazi Mazhar ul Haq & Shanq-Jang Ruan & Lieber Po-Hung Li, 2020. "Transferable Architecture for Segmenting Maxillary Sinuses on Texture-Enhanced Occipitomental View Radiographs," Mathematics, MDPI, vol. 8(5), pages 1-15, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2079-:d:1686064. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.