IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2058-d1684293.html
   My bibliography  Save this article

Gaussian Process with Vine Copula-Based Context Modeling for Contextual Multi-Armed Bandits

Author

Listed:
  • Jong-Min Kim

    (Statistics Discipline, Division of Science and Mathematics, University of Minnesota, Morris, MN 56267, USA
    EGADE Business School, Tecnológico de Monterrey, Ave. Rufino Tamayo, Monterrey 66269, Mexico)

Abstract

We propose a novel contextual multi-armed bandit (CMAB) framework that integrates copula-based context generation with Gaussian Process (GP) regression for reward modeling, addressing complex dependency structures and uncertainty in sequential decision-making. Context vectors are generated using Gaussian and vine copulas to capture nonlinear dependencies, while arm-specific reward functions are modeled via GP regression with Beta-distributed targets. We evaluate three widely used bandit policies—Thompson Sampling (TS), ε -Greedy, and Upper Confidence Bound (UCB)—on simulated environments informed by real-world datasets, including Boston Housing and Wine Quality. The Boston Housing dataset exemplifies heterogeneous decision boundaries relevant to housing-related marketing, while the Wine Quality dataset introduces sensory feature-based arm differentiation. Our empirical results indicate that the ε -Greedy policy consistently achieves the highest cumulative reward and lowest regret across multiple runs, outperforming both GP-based TS and UCB in high-dimensional, copula-structured contexts. These findings suggest that combining copula theory with GP modeling provides a robust and flexible foundation for data-driven sequential experimentation in domains characterized by complex contextual dependencies.

Suggested Citation

  • Jong-Min Kim, 2025. "Gaussian Process with Vine Copula-Based Context Modeling for Contextual Multi-Armed Bandits," Mathematics, MDPI, vol. 13(13), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2058-:d:1684293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    2. Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jong-Min Kim, 2025. "LLM-Guided Ensemble Learning for Contextual Bandits with Copula and Gaussian Process Models," Mathematics, MDPI, vol. 13(15), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DAVID E. ALLEN & MICHAEL McALEER & ROBERT J. POWELL & ABHAY K. SINGH, 2018. "Non-Parametric Multiple Change Point Analysis Of The Global Financial Crisis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-23, June.
    2. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    3. F. Durante & A. Gatto & F. Ravazzolo, 2024. "Understanding relationships with the Aggregate Zonal Imbalance using copulas," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 513-554, April.
    4. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    5. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    6. Yao, Yinhong & Chen, Xiuwen & Chen, Zhensong, 2025. "Portfolio tail risk forecasting for international financial assets: A GARCH-MIDAS-R-Vine copula model," The North American Journal of Economics and Finance, Elsevier, vol. 77(C).
    7. Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
    8. Zhang, Dalu, 2014. "Vine copulas and applications to the European Union sovereign debt analysis," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 46-56.
    9. Portier, François & Segers, Johan, 2018. "On the weak convergence of the empirical conditional copula under a simplifying assumption," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 160-181.
    10. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    11. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Zhichao Zhang & Fan Zhang & Zhuang Zhang, 2013. "Strategic Asset Allocation for China's Foreign Reserves: A Copula Approach," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 21(6), pages 1-21, November.
    13. Zhiwei Bai & Hongkui Wei & Yingying Xiao & Shufang Song & Sergei Kucherenko, 2021. "A Vine Copula-Based Global Sensitivity Analysis Method for Structures with Multidimensional Dependent Variables," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    14. Zhi, Bangdong & Wang, Xiaojun & Xu, Fangming, 2022. "Managing inventory financing in a volatile market: A novel data-driven copula model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    16. Mazo, Gildas & Averyanov, Yaroslav, 2019. "Constraining kernel estimators in semiparametric copula mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 170-189.
    17. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    18. Dominique Guegan & Bertrand K. Hassani, 2011. "Operational risk: a Basel II++ step before Basel III," Documents de travail du Centre d'Economie de la Sorbonne 11053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Rubén Albeiro Loaiza Maya & Jose Eduardo Gomez-Gonzalez & Luis Fernando Melo Velandia, 2015. "Latin American Exchange Rate Dependencies: A Regular Vine Copula Approach," Contemporary Economic Policy, Western Economic Association International, vol. 33(3), pages 535-549, July.
    20. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2058-:d:1684293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.