Author
Listed:
- Jong-Min Kim
(Statistics Discipline, Division of Science and Mathematics, University of Minnesota, Morris, MN 56267, USA
EGADE Business School, Tecnológico de Monterrey, Ave. Rufino Tamayo, Monterrey 66269, Mexico)
Abstract
We propose a novel contextual multi-armed bandit (CMAB) framework that integrates copula-based context generation with Gaussian Process (GP) regression for reward modeling, addressing complex dependency structures and uncertainty in sequential decision-making. Context vectors are generated using Gaussian and vine copulas to capture nonlinear dependencies, while arm-specific reward functions are modeled via GP regression with Beta-distributed targets. We evaluate three widely used bandit policies—Thompson Sampling (TS), ε -Greedy, and Upper Confidence Bound (UCB)—on simulated environments informed by real-world datasets, including Boston Housing and Wine Quality. The Boston Housing dataset exemplifies heterogeneous decision boundaries relevant to housing-related marketing, while the Wine Quality dataset introduces sensory feature-based arm differentiation. Our empirical results indicate that the ε -Greedy policy consistently achieves the highest cumulative reward and lowest regret across multiple runs, outperforming both GP-based TS and UCB in high-dimensional, copula-structured contexts. These findings suggest that combining copula theory with GP modeling provides a robust and flexible foundation for data-driven sequential experimentation in domains characterized by complex contextual dependencies.
Suggested Citation
Jong-Min Kim, 2025.
"Gaussian Process with Vine Copula-Based Context Modeling for Contextual Multi-Armed Bandits,"
Mathematics, MDPI, vol. 13(13), pages 1-18, June.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:13:p:2058-:d:1684293
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2058-:d:1684293. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.