IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p1938-d1676153.html
   My bibliography  Save this article

The Well-Posedness and Ergodicity of a CIR Equation Driven by Pure Jump Noise

Author

Listed:
  • Xu Liu

    (China Aerodynamics Research and Development Center, Mianyang 618000, China)

  • Xingfu Hong

    (China Aerodynamics Research and Development Center, Mianyang 618000, China)

  • Fujing Tian

    (China Aerodynamics Research and Development Center, Mianyang 618000, China)

  • Chufan Xiao

    (China Aerodynamics Research and Development Center, Mianyang 618000, China)

  • Hao Wen

    (China Aerodynamics Research and Development Center, Mianyang 618000, China)

Abstract

The current paper is devoted to the dynamical property of the stochastic Cox–Ingersoll–Ross (CIR) model with pure jump noise, which is an extension of the CIR model. Firstly, we characterize the existence and 2-moment of the CIR process with a pure jump process. Consequently, we provide sufficient conditions for the compensated Poisson random measure under which the CIR process with a pure jump process is ergodic. Moreover, the stationary solution can be constructed from the invariant measure. Some numerical simulations are provided to visualize the theoretical results.

Suggested Citation

  • Xu Liu & Xingfu Hong & Fujing Tian & Chufan Xiao & Hao Wen, 2025. "The Well-Posedness and Ergodicity of a CIR Equation Driven by Pure Jump Noise," Mathematics, MDPI, vol. 13(12), pages 1-12, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1938-:d:1676153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/1938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/1938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Yaozhong & Nualart, David & Song, Xiaoming, 2008. "A singular stochastic differential equation driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2075-2085, October.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    5. Darrell Duffie & Rui Kan, 1996. "A Yield‐Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406, October.
    6. Muhammad Zainul Abidin & Muhammad Marwan & Naeem Ullah & Ahmed Mohamed Zidan & Yongqiang Fu, 2023. "Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations," Journal of Mathematics, Hindawi, vol. 2023, pages 1-11, December.
    7. Dothan, L. Uri, 1978. "On the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 6(1), pages 59-69, March.
    8. Bao, Jianhai & Yuan, Chenggui, 2013. "Long-term behavior of stochastic interest rate models with jumps and memory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 266-272.
    9. Zhao, Juan, 2009. "Long time behaviour of stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 459-463, June.
    10. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    11. Longstaff, Francis A & Schwartz, Eduardo S, 1992. "Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model," Journal of Finance, American Finance Association, vol. 47(4), pages 1259-1282, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. repec:wyi:journl:002108 is not listed on IDEAS
    3. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    4. Cai, Zongwu & Hong, Yongmiao, 2003. "Nonparametric Methods in Continuous-Time Finance: A Selective Review," SFB 373 Discussion Papers 2003,15, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Robert J. Elliott & Tak Kuen Siu, 2016. "Pricing regime-switching risk in an HJM interest rate environment," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1791-1800, December.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    8. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    9. repec:uts:finphd:40 is not listed on IDEAS
    10. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    11. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    12. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    13. repec:dau:papers:123456789/5374 is not listed on IDEAS
    14. Wali Ullah, 2017. "Term structure forecasting in affine framework with time-varying volatility," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 453-483, August.
    15. Zura Kakushadze, 2015. "Coping with Negative Short-Rates," Papers 1502.06074, arXiv.org, revised Aug 2015.
    16. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    17. Date, Paresh & Wang, Chieh, 2009. "Linear Gaussian affine term structure models with unobservable factors: Calibration and yield forecasting," European Journal of Operational Research, Elsevier, vol. 195(1), pages 156-166, May.
    18. Vetzal, Kenneth R., 1997. "Stochastic volatility, movements in short term interest rates, and bond option values," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 169-196, February.
    19. Jun Yu & Peter C. B. Phillips, 2001. "A Gaussian approach for continuous time models of the short-term interest rate," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-3.
    20. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Modelos de la estructura de plazos de las tasas de interés: Revisión, tendencias y perspectivas," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    21. Casassus, Jaime & Collin-Dufresne, Pierre & Goldstein, Bob, 2005. "Unspanned stochastic volatility and fixed income derivatives pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2723-2749, November.
    22. Ben-Ameur, Hatem & Breton, Michele & Karoui, Lotfi & L'Ecuyer, Pierre, 2007. "A dynamic programming approach for pricing options embedded in bonds," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2212-2233, July.
    23. Haitao Li & Yuewu Xu, 2009. "Short Rate Dynamics and Regime Shifts," International Review of Finance, International Review of Finance Ltd., vol. 9(3), pages 211-241, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1938-:d:1676153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.