Author
Listed:
- Byoungho Choi
(Department of Smart Manufacturing Engineering, Changwon National University, Changwon-si 51140, Republic of Korea)
- Minkyu Kim
(Department of Smart Manufacturing Engineering, Changwon National University, Changwon-si 51140, Republic of Korea)
- Heungseob Kim
(Department of Smart Manufacturing Engineering, Changwon National University, Changwon-si 51140, Republic of Korea)
Abstract
This study addresses the multi-robot task allocation (MRTA) problem for logistics robots operating in zone-picking warehouse environments. With the rapid growth of e-commerce and the Fourth Industrial Revolution, logistics robots are increasingly deployed to manage high-volume order fulfillment. However, efficiently assigning tasks to multiple robots is a complex and computationally intensive problem. To address this, we propose a five-step optimization framework that reduces computation time while maintaining practical applicability. The first step calculates and stores distances and paths between product locations using the A* algorithm, enabling reuse in subsequent computations. The second step performs hierarchical clustering of orders based on spatial similarity and capacity constraints to reduce the problem size. In the third step, the traveling salesman problem (TSP) is formulated to determine the optimal execution sequence within each cluster. The fourth step uses a mixed integer linear programming (MILP) model to allocate clusters to robots while minimizing the overall makespan. Finally, the fifth step incorporates battery constraints by optimizing the task sequence and partial charging schedule for each robot. Numerical experiments were conducted using up to 1000 orders and 100 robots, and the results confirmed that the proposed method is scalable and effective for large-scale scenarios.
Suggested Citation
Byoungho Choi & Minkyu Kim & Heungseob Kim, 2025.
"An Optimization Framework for Allocating and Scheduling Multiple Tasks of Multiple Logistics Robots,"
Mathematics, MDPI, vol. 13(11), pages 1-23, May.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:11:p:1770-:d:1664845
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1770-:d:1664845. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.