IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i3p892-908.html
   My bibliography  Save this article

Multi-shuttle crane scheduling in automated storage and retrieval systems

Author

Listed:
  • Polten, Lukas
  • Emde, Simon

Abstract

We study a shared-storage automated storage and retrieval system (AS/RS) with one crane capable of carrying multiple unit loads. In a shared-storage system, items to be stored are not pre-assigned to dedicated shelf spaces. Therefore, given a set of storage and retrieval requests, the crane scheduling problem consists of deciding which requests are processed together in the same tour, determining the sequence in which the requests are processed, and assigning each storage request to an available slot on the shelf. We reformulate the problem as a special type of capacitated vehicle routing problem, which we use to close some open questions regarding the time complexity of related geometric routing problems. The reformulation allows us to tap into the rich and mature vehicle routing toolbox from the literature to propose a new exact solution approach. We show that this method is capable of solving large instances to optimality, outperforming previous methods from the literature. We use our new approach to derive multiple insights. Specifically, we show that system throughput can be predicted from the capacity of the crane via a simple rule. We also determine the optimal shape of a shelf and investigate the value of having knowledge of multiple requests when planning the crane schedule. Finally, we demonstrate that our approach can easily be extended to solve a whole family of multi-shuttle crane scheduling problems.

Suggested Citation

  • Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:892-908
    DOI: 10.1016/j.ejor.2022.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722000819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaeseok Huh & Moon-jung Chae & Jonghun Park & Kwanho Kim, 2019. "A case-based reasoning approach to fast optimization of travel routes for large-scale AS/RSs," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1765-1778, April.
    2. P. M. Dearing & R. L. Francis, 1974. "A Network Flow Solution to a Multifacility Minimax Location Problem Involving Rectilinear Distances," Transportation Science, INFORMS, vol. 8(2), pages 126-141, May.
    3. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    4. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    5. Faraz Ramtin & Jennifer A. Pazour, 2015. "Product allocation problem for an AS/RS with multiple in-the-aisle pick positions," IISE Transactions, Taylor & Francis Journals, vol. 47(12), pages 1379-1396, December.
    6. Antonella Meneghetti & Eleonora Dal Borgo & Luca Monti, 2015. "Rack shape and energy efficient operations in automated storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7090-7103, December.
    7. Baniasadi, Pouya & Foumani, Mehdi & Smith-Miles, Kate & Ejov, Vladimir, 2020. "A transformation technique for the clustered generalized traveling salesman problem with applications to logistics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 444-457.
    8. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    9. Amir Hossein Gharehgozli & Yugang Yu & Xiandong Zhang & René de Koster, 2017. "Polynomial Time Algorithms to Minimize Total Travel Time in a Two-Depot Automated Storage/Retrieval System," Transportation Science, INFORMS, vol. 51(1), pages 19-33, February.
    10. Gharehgozli, Amir & Xu, Chao & Zhang, Wenda, 2021. "High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system," European Journal of Operational Research, Elsevier, vol. 289(2), pages 495-507.
    11. Yang, Peng & Miao, Lixin & Xue, Zhaojie & Ye, Bin, 2015. "Variable neighborhood search heuristic for storage location assignment and storage/retrieval scheduling under shared storage in multi-shuttle automated storage/retrieval systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 164-177.
    12. Ulrich W. Thonemann & Margaret L. Brandeau, 1998. "Note. Optimal Storage Assignment Policies for Automated Storage and Retrieval Systems with Stochastic Demands," Management Science, INFORMS, vol. 44(1), pages 142-148, January.
    13. Nima Zaerpour & Yugang Yu & René B.M. Koster, 2015. "Storing Fresh Produce for Fast Retrieval in an Automated Compact Cross-Dock System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1266-1284, August.
    14. P. M. Dearing & R. L. Francis, 1974. "A Minimax Location Problem on a Network," Transportation Science, INFORMS, vol. 8(4), pages 333-343, November.
    15. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    16. Wanying Amanda Chen & Yeming Gong & René de Koster, 2022. "Performance estimation of a passing-crane automated storage and retrieval system," Post-Print hal-03188232, HAL.
    17. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    18. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    19. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    20. Mehdi Foumani & Asghar Moeini & Michael Haythorpe & Kate Smith-Miles, 2018. "A cross-entropy method for optimising robotic automated storage and retrieval systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(19), pages 6450-6472, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    2. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    3. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    4. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    5. Gharehgozli, Amir & Xu, Chao & Zhang, Wenda, 2021. "High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system," European Journal of Operational Research, Elsevier, vol. 289(2), pages 495-507.
    6. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    7. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    8. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    9. Nils Boysen & David Boywitz & Felix Weidinger, 2018. "Deep-lane storage of time-critical items: one-sided versus two-sided access," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1141-1170, October.
    10. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    11. Ang, Marcus & Lim, Yun Fong, 2019. "How to optimize storage classes in a unit-load warehouse," European Journal of Operational Research, Elsevier, vol. 278(1), pages 186-201.
    12. Lanza, Giacomo & Passacantando, Mauro & Scutellà, Maria Grazia, 2022. "Assigning and sequencing storage locations under a two level storage policy: Optimization model and matheuristic approaches," Omega, Elsevier, vol. 108(C).
    13. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    14. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    15. Nils Boysen & David Füßler & Konrad Stephan, 2020. "See the light: Optimization of put‐to‐light order picking systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(1), pages 3-20, February.
    16. Yue Chen & Yisong Li, 2024. "Storage Location Assignment for Improving Human–Robot Collaborative Order-Picking Efficiency in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 16(5), pages 1-25, February.
    17. Nils Boysen & Konrad Stephan & Felix Weidinger, 2019. "Manual order consolidation with put walls: the batched order bin sequencing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 169-193, June.
    18. David Füßler & Nils Boysen, 2019. "High-performance order processing in picking workstations," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 65-90, March.
    19. Zhuxi Chen & Xiaoping Li & Jatinder N.D. Gupta, 2016. "Sequencing the storages and retrievals for flow-rack automated storage and retrieval systems with duration-of-stay storage policy," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 984-998, February.
    20. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:892-908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.