IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i2p495-507.html
   My bibliography  Save this article

High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system

Author

Listed:
  • Gharehgozli, Amir
  • Xu, Chao
  • Zhang, Wenda

Abstract

We describe an algorithm for the high multiplicity asymmetric traveling salesman problem with feedback vertex set of size k (HMATSP-kFVS) where each vertex can be visited a certain number of times and each cycle in a solution contains at least one vertex from the feedback vertex set. We show how it can be used to improve algorithms in automated storage and retrieval systems. An automated storage and retrieval system includes storage blocks and storage and retrieval machines that either move to retrieve unit loads from their current locations in the system to a depot or take unit loads from a depot and store them to specific locations in the system. Given n storage and retrieval requests in a system with k depots and one storage and retrieval machine, we show that our algorithm for HMATSP-kFVS can solve the problem of minimizing total traveling time of the storage and retrieval machine in O(nk+n3) time when all depots are specialized (each depot fulfills one type of requests) and in O(n2k+n3) time when depots are regular (each depot fulfills both types of requests). The best previous algorithm only solves the special case of the problem with 2 regular depots in O(n6) time. The applicability of our algorithm for several generalizations and special cases of the problem is also discussed. Furthermore, to evaluate the performance of our solution method, we perform extensive numerical experiments.

Suggested Citation

  • Gharehgozli, Amir & Xu, Chao & Zhang, Wenda, 2021. "High multiplicity asymmetric traveling salesman problem with feedback vertex set and its application to storage/retrieval system," European Journal of Operational Research, Elsevier, vol. 289(2), pages 495-507.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:495-507
    DOI: 10.1016/j.ejor.2020.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306494
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gharehgozli, Amir Hossein & Yu, Yugang & de Koster, René & Udding, Jan Tijmen, 2014. "An exact method for scheduling a yard crane," European Journal of Operational Research, Elsevier, vol. 235(2), pages 431-447.
    2. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    3. Schwerdfeger, Stefan & Boysen, Nils, 2017. "Order picking along a crane-supplied pick face: The SKU switching problem," European Journal of Operational Research, Elsevier, vol. 260(2), pages 534-545.
    4. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    5. Iris F. A. Vis & Kees Jan Roodbergen, 2009. "Scheduling of Container Storage and Retrieval," Operations Research, INFORMS, vol. 57(2), pages 456-467, April.
    6. Yugang Yu & René de Koster, 2009. "Optimal zone boundaries for two-class-based compact three-dimensional automated storage and retrieval systems," IISE Transactions, Taylor & Francis Journals, vol. 41(3), pages 194-208.
    7. Michael F. Gorman & John-Paul Clarke & Amir Hossein Gharehgozli & Michael Hewitt & René de Koster & Debjit Roy, 2014. "State of the Practice: A Review of the Application of OR/MS in Freight Transportation," Interfaces, INFORMS, vol. 44(6), pages 535-554, December.
    8. Faraz Ramtin & Jennifer A. Pazour, 2015. "Product allocation problem for an AS/RS with multiple in-the-aisle pick positions," IISE Transactions, Taylor & Francis Journals, vol. 47(12), pages 1379-1396, December.
    9. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    10. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    11. Faraz Ramtin & Jennifer A. Pazour, 2014. "Analytical models for an automated storage and retrieval system with multiple in-the-aisle pick positions," IISE Transactions, Taylor & Francis Journals, vol. 46(9), pages 968-986, September.
    12. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "Yard Crane Scheduling for container storage, retrieval, and relocation," European Journal of Operational Research, Elsevier, vol. 271(1), pages 288-316.
    13. Amir Hossein Gharehgozli & Yugang Yu & Xiandong Zhang & René de Koster, 2017. "Polynomial Time Algorithms to Minimize Total Travel Time in a Two-Depot Automated Storage/Retrieval System," Transportation Science, INFORMS, vol. 51(1), pages 19-33, February.
    14. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    15. Amir Hossein Gharehgozli & Debjit Roy & René de Koster, 2016. "Sea container terminals: New technologies and OR models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(2), pages 103-140, June.
    16. Yugang Yu & René De Koster, 2012. "Sequencing heuristics for storing and retrieving unit loads in 3D compact automated warehousing systems," IISE Transactions, Taylor & Francis Journals, vol. 44(2), pages 69-87.
    17. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    18. Li, Wenkai & Goh, Mark & Wu, Yong & Petering, M.E.H. & de Souza, R. & Wu, Y.C., 2012. "A continuous time model for multiple yard crane scheduling with last minute job arrivals," International Journal of Production Economics, Elsevier, vol. 136(2), pages 332-343.
    19. Li, Wenkai & Wu, Yong & Petering, M.E.H. & Goh, Mark & Souza, Robert de, 2009. "Discrete time model and algorithms for container yard crane scheduling," European Journal of Operational Research, Elsevier, vol. 198(1), pages 165-172, October.
    20. Nima Zaerpour & Yugang Yu & René B.M. Koster, 2015. "Storing Fresh Produce for Fast Retrieval in an Automated Compact Cross-Dock System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1266-1284, August.
    21. Harilaos N. Psaraftis, 1980. "A Dynamic Programming Approach for Sequencing Groups of Identical Jobs," Operations Research, INFORMS, vol. 28(6), pages 1347-1359, December.
    22. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    23. Boysen, Nils & Stephan, Konrad, 2016. "A survey on single crane scheduling in automated storage/retrieval systems," European Journal of Operational Research, Elsevier, vol. 254(3), pages 691-704.
    24. Hu Yu & Yugang Yu, 2019. "Optimising two dwell point policies for AS/RSs with input and output point at opposite ends of the aisle," International Journal of Production Research, Taylor & Francis Journals, vol. 57(21), pages 6615-6633, November.
    25. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    26. Roodbergen, Kees Jan & Vis, Iris F.A., 2009. "A survey of literature on automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 194(2), pages 343-362, April.
    27. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126185, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    28. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    2. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Gharehgozli, Amir Hossein & Vernooij, Floris Gerardus & Zaerpour, Nima, 2017. "A simulation study of the performance of twin automated stacking cranes at a seaport container terminal," European Journal of Operational Research, Elsevier, vol. 261(1), pages 108-128.
    4. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    5. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    6. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    7. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    8. Dong, Wenquan & Jin, Mingzhou, 2024. "Automated storage and retrieval system design with variant lane depths," European Journal of Operational Research, Elsevier, vol. 314(2), pages 630-646.
    9. Vallada, Eva & Belenguer, Jose Manuel & Villa, Fulgencia & Alvarez-Valdes, Ramon, 2023. "Models and algorithms for a yard crane scheduling problem in container ports," European Journal of Operational Research, Elsevier, vol. 309(2), pages 910-924.
    10. Sumin Chen & Qingcheng Zeng & Yushan Hu, 2022. "Scheduling optimization for two crossover automated stacking cranes considering relocation," Operational Research, Springer, vol. 22(3), pages 2099-2120, July.
    11. Wang, Mengyao & Zhou, Chenhao & Wang, Aihu, 2022. "A cluster-based yard template design integrated with yard crane deployment using a placement heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    12. Amir Gharehgozli & Debjit Roy & Suruchika Saini & Jan-Kees Ommeren, 2023. "Loading and unloading trains at the landside of container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 549-575, September.
    13. Galle, Virgile & Barnhart, Cynthia & Jaillet, Patrick, 2018. "Yard Crane Scheduling for container storage, retrieval, and relocation," European Journal of Operational Research, Elsevier, vol. 271(1), pages 288-316.
    14. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    15. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    16. Amelie Eilken, 2019. "A decomposition-based approach to the scheduling of identical automated yard cranes at container terminals," Journal of Scheduling, Springer, vol. 22(5), pages 517-541, October.
    17. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    18. Lennart Zey & Dirk Briskorn & Nils Boysen, 2022. "Twin-crane scheduling during seaside workload peaks with a dedicated handshake area," Journal of Scheduling, Springer, vol. 25(1), pages 3-34, February.
    19. Michele Barbato & Alberto Ceselli & Giovanni Righini, 2024. "A polynomial-time dynamic programming algorithm for an optimal picking problem in automated warehouses," Journal of Scheduling, Springer, vol. 27(4), pages 393-407, August.
    20. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:495-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.