IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i8p1204-d1377445.html
   My bibliography  Save this article

Stochastic Synchronization of Impulsive Reaction–Diffusion BAM Neural Networks at a Fixed and Predetermined Time

Author

Listed:
  • Rouzimaimaiti Mahemuti

    (School of Information Technology and Engineering, Guangzhou College of Commerce, Guangzhou 511363, China
    Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China)

  • Ehmet Kasim

    (College of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, China)

  • Hayrengul Sadik

    (College of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, China)

Abstract

This paper discusses the synchronization problem of impulsive stochastic bidirectional associative memory neural networks with a diffusion term, specifically focusing on the fixed-time (FXT) and predefined-time (PDT) synchronization. First, a number of more relaxed lemmas are introduced for the FXT and PDT stability of general types of impulsive nonlinear systems. A controller that does not require a sign function is then proposed to ensure that the synchronization error converges to zero within a predetermined time. The controllerdesigned in this paper serves the additional purpose of preventing the use of an unreliable inequality in the course of proving the main results. Next, to guarantee FXT and PDT synchronization of the drive–response systems, this paper employs the Lyapunov function method and derives sufficient conditions. Finally, a numerical simulation is presented to validate the theoretical results.

Suggested Citation

  • Rouzimaimaiti Mahemuti & Ehmet Kasim & Hayrengul Sadik, 2024. "Stochastic Synchronization of Impulsive Reaction–Diffusion BAM Neural Networks at a Fixed and Predetermined Time," Mathematics, MDPI, vol. 12(8), pages 1-19, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1204-:d:1377445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/8/1204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/8/1204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Dandan & Tan, Jieqing & Shi, Kaibo & Ding, Kui, 2022. "Switching synchronization of reaction-diffusion neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Sader, Malika & Abdurahman, Abdujelil & Jiang, Haijun, 2018. "General decay synchronization of delayed BAM neural networks via nonlinear feedback control," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 302-314.
    3. F. Comte, 1996. "Simulation And Estimation Of Long Memory Continuous Time Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(1), pages 19-36, January.
    4. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    5. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    6. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    7. Hayrengul Sadik & Abdujelil Abdurahman & Rukeya Tohti, 2023. "Fixed-Time Synchronization of Reaction-Diffusion Fuzzy Neural Networks with Stochastic Perturbations," Mathematics, MDPI, vol. 11(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouzimaimaiti Mahemuti & Abdujelil Abdurahman, 2023. "Predefined-Time (PDT) Synchronization of Impulsive Fuzzy BAM Neural Networks with Stochastic Perturbations," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    2. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    3. Kanaya, Shin & Kristensen, Dennis, 2016. "Estimation Of Stochastic Volatility Models By Nonparametric Filtering," Econometric Theory, Cambridge University Press, vol. 32(4), pages 861-916, August.
    4. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    5. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    6. Casas, Isabel & Gao, Jiti, 2008. "Econometric estimation in long-range dependent volatility models: Theory and practice," Journal of Econometrics, Elsevier, vol. 147(1), pages 72-83, November.
    7. Eduardo Rossi & Paolo Santucci de Magistris, 2014. "Estimation of Long Memory in Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 785-814, October.
    8. N. N. Leonenko & Emanuele Taufer, 2001. "Asymptotic properties of LSE in multivariate continuous regression with long memory stationary errors," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1-2), pages 54-71.
    9. M.L. Kleptsyna & A. Le Breton, 2002. "Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process," Statistical Inference for Stochastic Processes, Springer, vol. 5(3), pages 229-248, October.
    10. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    11. Federico M. Bandi & Benoit Perron, 2006. "Long Memory and the Relation Between Implied and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 636-670.
    12. Susanne M. Schennach, 2018. "Long Memory via Networking," Econometrica, Econometric Society, vol. 86(6), pages 2221-2248, November.
    13. Arthur Yosef, 2021. "Selected Topics in the Generalized Mixed Set-Indexed Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1366-1381, September.
    14. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    15. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    16. Leonenko, Nikolai N. & Sharapov, Michail M. & El-Bassiouny, Ahmed H., 2000. "On the exactness of normal approximation of LSE of regression coefficient of long-memory random fields," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 121-130, June.
    17. Li, Jia & Phillips, Peter C. B. & Shi, Shuping & Yu, Jun, 2022. "Weak Identification of Long Memory with Implications for Inference," Economics and Statistics Working Papers 8-2022, Singapore Management University, School of Economics.
    18. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Jan 2025.
    19. Carsten H. Chong & Viktor Todorov, 2024. "A nonparametric test for rough volatility," Papers 2407.10659, arXiv.org.
    20. Turvey, Calum G. & Power, Gabriel J., 2006. "The Confidence Limits of a Geometric Brownian Motion," 2006 Annual meeting, July 23-26, Long Beach, CA 21239, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:8:p:1204-:d:1377445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.