IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921011206.html
   My bibliography  Save this article

Switching synchronization of reaction-diffusion neural networks with time-varying delays

Author

Listed:
  • Hu, Dandan
  • Tan, Jieqing
  • Shi, Kaibo
  • Ding, Kui

Abstract

This paper explores the switching synchronization problem of reaction-diffusion neural networks with time-varying delays, and two improved synchronization switching law strategies are proposed for stability analysis. One is constructed by adopting a Lyapunov-Krasovskii functional combined with the use of improved Wirtinger's integral inequality for managing the reaction-diffusion terms. The other is designed to utilize the Lyapunov-Razumikhin function, which is easier to deal with the reaction-diffusion terms directly compared to the former one. As a result, the time-space feature of the proposed switching synchronization is more robust and compatible than previous works. Finally, the simulated numerical experiments make out the effectiveness of the developed approaches in this work.

Suggested Citation

  • Hu, Dandan & Tan, Jieqing & Shi, Kaibo & Ding, Kui, 2022. "Switching synchronization of reaction-diffusion neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011206
    DOI: 10.1016/j.chaos.2021.111766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921011206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Li & Yang, Huizhong & Lou, Xuyang, 2009. "Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 930-939.
    2. Guan, Zhi-Hong & Zhang, Hao, 2008. "Stabilization of complex network with hybrid impulsive and switching control," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1372-1382.
    3. Zhang, Yutian & Luo, Qi, 2012. "Novel stability criteria for impulsive delayed reaction–diffusion Cohen–Grossberg neural networks via Hardy–Poincarè inequality," Chaos, Solitons & Fractals, Elsevier, vol. 45(8), pages 1033-1040.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jing & Xiao, Min & Wu, Xiaoqun & Wang, Zhengxin & Cao, Jinde, 2022. "Spatiotemporal dynamics on a class of (n+1)-dimensional reaction–diffusion neural networks with discrete delays and a conical structure," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Rouzimaimaiti Mahemuti & Abdujelil Abdurahman, 2023. "Predefined-Time (PDT) Synchronization of Impulsive Fuzzy BAM Neural Networks with Stochastic Perturbations," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    3. Rouzimaimaiti Mahemuti & Ehmet Kasim & Hayrengul Sadik, 2024. "Stochastic Synchronization of Impulsive Reaction–Diffusion BAM Neural Networks at a Fixed and Predetermined Time," Mathematics, MDPI, vol. 12(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhang, 2009. "Dynamic analysis of reaction–diffusion Cohen–Grossberg neural networks with varying delay and Robin boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1724-1730.
    2. Xiong, Lianglin & Zhong, Shouming & Ye, Mao & Wu, Shiliang, 2009. "New stability and stabilization for switched neutral control systems," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1800-1811.
    3. Shen, Yi & Pei, Wenjiang & Wang, Kai & Li, Tao & Wang, Shaoping, 2008. "Recursive filtration method for detecting community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6663-6670.
    4. Yue, Dandan & Guan, Zhi-Hong & Li, Tao & Liao, Rui-Quan & Liu, Feng & Lai, Qiang, 2017. "Event-based cluster synchronization of coupled genetic regulatory networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 649-665.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921011206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.